Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
d_time_hat = []
for i in range (len(d_hat)):
d_act_hat = datetime.datetime.fromtimestamp(d_hat[i])
d_time_hat.append(d_act_hat)
with plt.style.context("fivethirtyeight"):
figure = plt.figure(figsize=(15, 10))
plt.subplots_adjust(bottom=0.25)
plt.xticks(rotation = 75)
ax=plt.gca()
xfmt = md.DateFormatter('%Y/%m/%d %H-h')
ax.xaxis.set_major_formatter(xfmt)
ax.grid(True)
plt.ylim(-2, 32)
plt.ylabel("Corrected Power (MW), Wind Speed (m/s)")
plt.plot(d_time, y1, label = 'Power Production', color="b", alpha=0.5)
plt.plot(d_time, y2, label = 'Wind Speed', color="g", alpha=0.5)
plt.plot(d_time_hat, y1_hat, label = 'Power Production (damaged)',
color="b", linestyle="-.", marker="o")
plt.plot(d_time_hat, y2_hat, label = 'Wind Speed (damaged)', color="g",
marker="o", linestyle="-.")
plt.legend(loc='lower right')
plt.title("Timeseries of the Selected Turbine")
plt.show()
"#3C763D", # Thymine
"#777777", # Cytosine
]
for i in range(0, 4):
data = [pnt[i] for pnt in composition]
plt.plot(range(1, len(data) + 1), data, color=colors[i])
plt.plot(range(1, len(data) + 1), data, color=colors[i])
plt.plot(range(1, len(data) + 1), data, color=colors[i])
plt.plot(range(1, len(data) + 1), data, color=colors[i])
plt.title('Nucleotide Composition')
plt.xlabel('Read Position (bp)')
plt.ylabel('Composition (%)')
plt.ylim(0, 100)
plt.xlim(1, len(composition))
plt.tight_layout()
handles = [mpatches.Patch(color=colors[i], label=labels[i]) for i in range(0, 4)]
plt.legend(handles=handles, prop={"size": 6})
plt.plot(xvals, [-9 for _ in range(maxiter)], 'k--')
plt.annotate('tolerance', xy=(1, -9.4), fontsize=fs)
left = 6.15
bottom = -12
width = 0.7
height = 12
right = left + width
top = bottom + height
rect = plt.Rectangle(xy=(left, bottom), width=width, height=height, color='lightgrey')
plt.text(0.5 * (left + right), 0.5 * (bottom + top), 'node failure', horizontalalignment='center',
verticalalignment='center', rotation=90, color='k', fontsize=fs)
fig.gca().add_artist(rect)
plt.xlim(1 - 0.25, maxiter + 0.25)
plt.ylim(minres - 0.25, maxres + 0.25)
plt.xlabel('iteration', **axis_font)
plt.ylabel('log10(residual)', **axis_font)
plt.title('ALL', **axis_font)
ax.xaxis.labelpad = 0
ax.yaxis.labelpad = 0
plt.tick_params(axis='both', which='major', labelsize=fs)
plt.legend(numpoints=1, fontsize=fs)
plt.xticks(range(1, maxiter + 1))
plt.yticks(range(minres, maxres + 1))
ax.tick_params(pad=2)
# plt.tight_layout()
def save_pr_curve(self, save_name='./data/P_R_curve.png'):
if self.Precision is None or self.Recall is None:
return
# save the P-R curve
save_dir = os.path.dirname(save_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
plt.clf()
plt.plot(self.Recall, self.Precision)
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.title('Precision-Recall Curve')
plt.grid()
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.savefig(save_name, dpi=400)
print('Precision-recall curve has been written to {}'.format(save_name))
def plot_prc(file_name, precisions, recalls, average_precision):
# Plot P-R curve
plt.figure(figsize=(16, 9))
plt.plot(recalls, precisions)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.05])
plt.title('Precision-Recall curve: AUC={0:0.2f}'.format(average_precision))
plt.savefig("result/%s-pr.png" % file_name)
self.gateLats[:-1], color='r', lw=2)
ax1.plot(2 * self.gateLons[i] - self.lonCrossingSynEWMean[:, i], \
self.gateLats[:-1],color='k',lw=2)
x1 = 2 * self.gateLons[i] - self.lonCrossingSynEWUpper[:, i]
x2 = 2 * self.gateLons[i] - self.lonCrossingSynEWLower[:, i]
ax1.fill_betweenx(self.gateLats[:-1], x1, x2,
color='0.5', alpha=0.5)
minLonLim = 2 * self.minLon
maxLonLim = 2 * self.maxLon + 20.
pyplot.xlim(minLonLim, maxLonLim)
pyplot.xticks(2 * self.gateLons, self.gateLons.astype(int), fontsize=8)
pyplot.xlabel("East-west crossings")
pyplot.ylim(self.gateLats.min(), self.gateLats[-2])
pyplot.yticks(fontsize=8)
pyplot.ylabel('Latitude')
ax1.tick_params(direction='out', top='off', right='off')
pyplot.grid(True)
ax2 = pyplot.subplot(212)
for i in range(len(self.gateLons)):
ax2.plot(2 * self.gateLons[i] + self.lonCrossingWEHist[:, i] * \
self.synNumYears / self.historicNumYears,
self.gateLats[:-1], color='r', lw=2)
ax2.plot(2 * self.gateLons[i] + self.lonCrossingSynWEMean[:, i],
self.gateLats[:-1], color='k', lw=2)
x1 = 2 * self.gateLons[i] + self.lonCrossingSynWEUpper[:, i]
x2 = 2 * self.gateLons[i] + self.lonCrossingSynWELower[:, i]
#set up plot
sns.set_style('darkgrid')
sns.set_context('paper')
fig = plt.figure()
ax = fig.add_subplot(111)
YLabel = "Number of "+type
SBG.stackedBarPlot(ax,panda,color_palette,xLabels=panda.index.values,endGaps=True,gap=0.25,xlabel="Genomes",ylabel=YLabel,yTicks=yticks)
plt.title(type+" summary")
#get the legend
legends = []
i = 0
for column in panda.columns:
legends.append(mpatches.Patch(color=color_palette[i], label=panda.columns.values[i]+ ": " + labels.get(panda.columns.values[i])))
i+=1
lgd = ax.legend(handles=legends, fontsize=6, loc='upper left', bbox_to_anchor=(1.02, 1), borderaxespad=0)
plt.ylim([0,ymax])
#set the font size - i wish I knew how to do this proportionately.....but setting to something reasonable.
for item in ax.get_xticklabels():
item.set_fontsize(8)
#setup the plot
fig.subplots_adjust(bottom=0.4)
fig.savefig(output, format='pdf', bbox_extra_artists=(lgd,), bbox_inches='tight')
plt.close(fig)
print 'Converged at iteration %d! Gap: %s' % (iteration, GAP)
else:
print 'Did not converge. Gap: ', GAP
print separator
print 'Objective value:', master_problem.objVal
print 'Investment cost %s, operation cost %s ' % (get_investment_cost(x, y), subproblem.objVal)
print separator
plot_gap = False
if plot_gap:
from matplotlib import pyplot as plt
plt.plot(gaps)
plt.ylim(np.amin(gaps), 1e-2)
plt.ylabel('GAP')
plt.xlabel('iteration')
plt.show()
elif len(yMaxes) == 1:
title = 'Single Peak'
elif len(yMaxes) < 1:
title = 'No Peak'
plt.figure(figsize = (8, 6))
plt.plot(x, y, 'purple', lw = 0.3, label = 'Raw')
plt.xlabel('Wavelength (nm)', fontsize = 14)
plt.ylabel('Intensity', fontsize = 14)
plt.plot(xTrunc, ySmooth, 'g', label = 'Smoothed')
plt.plot(x2, y2,'k', label = 'Truncated')
#plt.plot(xMins, yMins, 'ko', label = 'Minima')
#plt.plot(xMaxes, yMaxes, 'go', label = 'Maxima in CM Region')
plt.legend(loc = 0, ncol = 3, fontsize = 10)
plt.ylim(0, ySmooth.max()*1.23)
plt.xlim(450, 900)
plt.title(title, fontsize = 16)
plt.show()
return isDouble
return getInd(ri[j:], z)
xt = [i if (i in getInd()) else '' for i in range(K)]
pl.xticks(xs[1:], xt[1:], fontsize=10)
pl.yticks(fontsize=10)
#ax = pl.gca()
#for label in ax.get_xticklabels():
# label.set_bbox(dict(fc='w', ec='None', alpha=0.5))
# Remove the abscissa ticks and set up the axes limits.
for tick in ax.get_xticklines():
tick.set_visible(False)
pl.xlim(0, ndx)
min_y *= 1.01
max_y *= 1.01
pl.ylim(min_y, max_y)
for i,j in zip(xs[1:], xt[1:]):
pl.annotate(('%.2f' % (i-1.0 if i>1.0 else i) if not j=='' else ''), xy=(i, 0), xytext=(i, 0.01), size=10, rotation=90, textcoords=('data', 'axes fraction'), va='bottom', ha='center', color='#151B54')
if ndx>1:
lenticks = len(ax.get_ymajorticklabels()) - 1
if min_y<0: lenticks -= 1
if lenticks < 5:
from matplotlib.ticker import AutoMinorLocator as AML
ax.yaxis.set_minor_locator(AML())
pl.grid(which='both', color='w', lw=0.25, axis='y', zorder=12)
pl.ylabel(r'$\mathrm{\langle{\frac{ \partial U } { \partial \lambda }}\rangle_{\lambda}\/%s}$' % P.units, fontsize=20, color='#151B54')
pl.annotate('$\mathit{\lambda}$', xy=(0, 0), xytext=(0.5, -0.05), size=18, textcoords='axes fraction', va='top', ha='center', color='#151B54')
if not P.software == 'sire':
lege = ax.legend(prop=FP(size=14), frameon=False, loc=1)