Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
#v2=(p2_st.y>-1.0)
v2 = arange(len(p2_st.y))
if verbose: print 'Calculate analytical solution'
h,z = analytic_sol(p2_st.x[v2])
qexact = 1.0
#Plot the stages##############################################################
if verbose: print 'Create Stage plot'
pyplot.clf()
pyplot.plot(p2_st.x[v2], p2_st.stage[tid,v2], 'b.-', label='numerical stage') # 0*T/6
pyplot.plot(p2_st.x[v2], h+z,'r-', label='analytical stage')
pyplot.plot(p2_st.x[v2], z,'k-', label='bed elevation')
pyplot.xlim((5,20))
pyplot.title('Stage at time = %s secs'% p2_st.time[tid])
##pyplot.ylim(-5.0,5.0)
pyplot.legend(loc='best')
pyplot.xlabel('Xposition')
pyplot.ylabel('Stage')
pyplot.savefig('stage_plot.png')
#Plot the momentums##########################################################
if verbose: print 'Create Momentum plot'
pyplot.clf()
pyplot.plot(p2_st.x[v2], p2_st.xmom[tid,v2], 'b.-', label='numerical') # 0*T/6
pyplot.plot(p2_st.x[v2], qexact*ones(len(p2_st.x[v2])),'r-', label='analytical')
pyplot.xlim((5,20))
pyplot.title('Xmomentum at time = %s secs'% p2_st.time[tid])
bzarr=np.ones_like(zarr)
bzarr2=2*np.ones_like(zarr)
tzarr=5.5919E-2+2.3242E-1*zarr-2.4136E-2*zarr**2.
norm=ngal/(4*np.pi*(180/np.pi)**2*np.sum(nzarr)*(zf-z0)/nz)
nzarr*=norm
norm2=ngal2/(4*np.pi*(180/np.pi)**2*np.sum(nzarr2)*(zf-z0)/nz)
nzarr2*=norm2
np.savetxt("Nz_test.txt",np.transpose([zarr,nzarr]))
np.savetxt("Nz2_test.txt",np.transpose([zarr,nzarr2]))
np.savetxt("Tz_test.txt",np.transpose([zarr,tzarr]))
np.savetxt("Bz_test.txt",np.transpose([zarr,bzarr]))
np.savetxt("Bz2_test.txt",np.transpose([zarr,bzarr2]))
np.savetxt("nuTable.txt",np.transpose([nu0_arr,nuf_arr]))
plt.plot(zarr,nzarr); plt.plot(zarr,nzarr2); plt.show()
plt.plot(zarr,bzarr); plt.show()
plt.plot(zarr,tzarr); plt.show()
def test_gibbs_update_synapses():
"""
Test the mean field updates for synapses
"""
population = create_simple_population(N=5, T=10000)
neuron = population.neuron_models[0]
synapse = neuron.synapse_models[0]
data = neuron.data_list[0]
plt.ion()
plt.figure()
plt.plot(data.psi, '-b')
plt.plot(np.nonzero(data.counts)[0], data.counts[data.counts>0], 'ko')
psi = plt.plot(data.psi, '-r')
plt.show()
A_true = neuron.An.copy()
print "A_true: ", neuron.An
print "W_true: ", neuron.weights
print "b_true: ", neuron.bias
# Initialize to a random connections
neuron.An = np.random.rand(5) < 0.5
print "--" * 20
raw_input("Press enter to continue...")
N_iter = 1000
prody.showContactMap(gnm)
plt.savefig(os.path.join(outdir, prefix + '_cm.'+format),
dpi=dpi, format=format)
plt.close('all')
if figall or sf:
plt.figure(figsize=(width, height))
prody.showSqFlucts(gnm)
plt.savefig(os.path.join(outdir, prefix + '_sf.'+format),
dpi=dpi, format=format)
plt.close('all')
if figall or bf:
plt.figure(figsize=(width, height))
bexp = select.getBetas()
bcal = prody.calcTempFactors(gnm, select)
plt.plot(bexp, label='Experimental')
plt.plot(bcal, label=('Theoretical (corr coef = {0:.2f})'
.format(np.corrcoef(bcal, bexp)[0,1])))
plt.legend(prop={'size': 10})
plt.xlabel('Node index')
plt.ylabel('Experimental B-factors')
plt.title(pdb.getTitle() + ' B-factors')
plt.savefig(os.path.join(outdir, prefix + '_bf.'+format),
dpi=dpi, format=format)
plt.close('all')
if modes:
indices = []
items = modes.split()
items = sum([item.split(',') for item in items], [])
for item in items:
try:
item = item.split('-')
if len(item) == 1:
e = Eout(w, b)
print(e)
####(c)
clf = Perceptron()
clf.fit(X, y)
w1 = clf.coef_[0]
b1 = clf.intercept_[0]
#作图
m1 = np.array([-1, 1])
n1 = - (b + w[0] * m1) / w[1]
plt.scatter(x1[y>0], x2[y>0], label="+")
plt.scatter(x1[y<0], x2[y<0], label="-")
plt.plot(m1, n1, 'r')
plt.legend()
plt.show()
#多次实验,做直方图
result = np.array([])
for i in range(2000):
np.random.shuffle(X)
y = np.sign(X[:,1])
clf.fit(X, y)
w1 = clf.coef_[0]
b1 = clf.intercept_[0]
result = np.append(result,Eout(w1,b1))
plt.hist(result, label="PLA")
plt.plot([e] * 400, range(400), 'r', label="SVM")
plt.legend()
def tran_flow_size_to_time_varying(f_name, out_f_name, transform,
data_pic_name):
""" tranform flow size in the flow record to be time_varying model
"""
flows, keys = RawParseData(f_name)
zip_flows = zip(*flows)
t_idx = keys.index('start_time')
fs_idx = keys.index('flow_size')
t = [float(vt) for vt in zip_flows[t_idx]]
mint = min(t)
nt = [v_ - mint for v_ in t]
flow_size = [float(fs) for fs in zip_flows[fs_idx]]
fig = plt.figure()
ax1 = fig.add_subplot(211)
plt.plot(nt, flow_size, axes=ax1)
new_flow_size = transform(t, flow_size)
zip_flows[fs_idx] = [str(fs) for fs in new_flow_size]
ax2 = fig.add_subplot(212)
plt.plot(nt, new_flow_size, axes=ax2)
# plt.savefig('scene.pdf')
plt.savefig(data_pic_name)
# plt.show()
flows = zip(*zip_flows)
write_file(out_f_name, FS_FORMAT, flows, keys)
def plot_ground_truth(test_x, test_y_mean_, test_y_var_):
plt.plot(test_x, test_y_mean_, c="k", linewidth=2)
plt.plot(test_x, test_y_mean_ + 3. * np.sqrt(test_y_var_), '--',
color="k", linewidth=2)
plt.plot(test_x, test_y_mean_ - 3. * np.sqrt(test_y_var_), '--',
color="k", linewidth=2)
linecolor = color_regular
else:
linecolor = color_diffusive
ylim_real = [-0.6, 0.01]
# remove pts outside of limit
if l_j==1 or k < 8:
plotinds_real = (lambda_all[k, plotinds, j].real >= ylim_real[0]) & (lambda_all[k, plotinds, j].real <= ylim_real[1])
else:
plotinds_real = lambda_all[k, plotinds, j].real >= -10000.
# eigenval: real part
plt.subplot(2, N_plotcols, subplotid,
sharex=ax_real if subplotid > 1 else None,
sharey=ax_real if subplotid > 1 else None)
plt.plot(mu[plotinds][plotinds_real], lambda_all[k, plotinds, j].real[plotinds_real], color=linecolor)
if l_j==0:
if k==0:
plt.ylabel('$\mathrm{Re}\lambda_n$ [kHz]')
if k==0:
plt.title('$\sigma={0:.3}$ [mV/$\sqrt{{\mathrm{{ms}}}}$]'.format(sigma[j]))
plt.ylim(ylim_real)
plt.yticks([-0.6,0])
plt.plot(mu[plotinds][plotinds_real], np.zeros_like(mu[plotinds])[plotinds_real], color='gray', lw=2)
plt.xlim(xlim)
# dots for relation with other fig
if k==0 and l_j==0:
i = np.argmin(np.abs(mu-0.25))
plt.plot(mu[i], lambda_all[k, i, j].real, '^b', ms=5)
if k==0 and l_j==0:
i = np.argmin(np.abs(mu-1.5))
def find_zeros(x, y):
sign = np.sign(y[0])
i = 1
while i < len(y):
if sign != np.sign(y[i]):
return x[i-1] + (x[i-1] - x[i]) * y[i-1] / (y[i] - y[i-1])
i += 1
if i > len(x):
return
phi = newton_krylov(minimize, np.ones_like(self.alpha))
a_p = [find_zeros(vel(phi), phi), find_zeros(gz(), phi)]
plt.plot(vel(phi), gz())
plt.plot(vel(phi), phi)
plt.plot(a_p[0], a_p[1], marker='o')
plt.plot()
plt.grid()
plt.show()
plt.plot(sol_indirect.t, sol_indirect.y[:, 0], linestyle='-', color='b', label='indirect')
plt.plot([sol_indirect.t[0], sol_indirect.t[-1]], [sol_indirect.const[-1]]*2, linestyle='--', color='k')
plt.title('Position')
plt.xlabel('Time [s]')
plt.legend()
plt.grid(True)
plt.figure()
plt.plot(sol_indirect.t, sol_indirect.y[:, 1], linestyle='-', color='b', label='indirect')
plt.title('Velocity')
plt.xlabel('Time [s]')
plt.legend()
plt.grid(True)
plt.figure()
plt.plot(sol_indirect.t, sol_indirect.u, linestyle='-', color='b', label='indirect')
plt.title('Control')
plt.xlabel('Time [s]')
plt.legend()
plt.grid(True)
plt.figure()
plt.plot(sol_indirect.t, sol_indirect.dual[:, 0], linestyle='-', color='b', label='indirect')
plt.title('Position Costate')
plt.xlabel('Time [s]')
plt.legend()
plt.grid(True)
plt.figure()
plt.plot(sol_indirect.t, sol_indirect.dual[:, 1], linestyle='-', color='b', label='indirect')
plt.title('Velocity Costate')
plt.xlabel('Time [s]')