How to use the matplotlib.pyplot.axis function in matplotlib

To help you get started, we’ve selected a few matplotlib examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github rohanchandra30 / TrackNPred / model / Detection / Mask / build / lib / mrcnn / visualize.py View on Github external
"""Display the given set of images, optionally with titles.
    images: list or array of image tensors in HWC format.
    titles: optional. A list of titles to display with each image.
    cols: number of images per row
    cmap: Optional. Color map to use. For example, "Blues".
    norm: Optional. A Normalize instance to map values to colors.
    interpolation: Optional. Image interporlation to use for display.
    """
    titles = titles if titles is not None else [""] * len(images)
    rows = len(images) // cols + 1
    plt.figure(figsize=(14, 14 * rows // cols))
    i = 1
    for image, title in zip(images, titles):
        plt.subplot(rows, cols, i)
        plt.title(title, fontsize=9)
        plt.axis('off')
        plt.imshow(image.astype(np.uint8), cmap=cmap,
                   norm=norm, interpolation=interpolation)
        i += 1
    plt.show()
github uranus4ever / Advanced-Lane-Detection / helper.py View on Github external
plt.figure('adjust_gamma', figsize=(10, 4))
    plt.subplot(221)
    plt.title('origin dark image')
    plt.imshow(img_dark)
    plt.axis('off')

    plt.subplot(222)
    plt.title('gamma=0.3')
    plt.imshow(gam1)
    plt.axis('off')

    plt.subplot(223)
    plt.title('origin light image')
    plt.imshow(img_light)
    plt.axis('off')

    plt.subplot(224)
    plt.title('gamma=2')
    plt.imshow(gam2)
    plt.axis('off')
    plt.show()
github gumpu / TSP_Animation / anim.py View on Github external
plt.plot(cities[:,0],cities[:,1],'bo-')
    #plt.scatter(cities[:,0], cities[:,1],s=50,c='k')

    if gain < 0:
        plt.scatter(cities2[:,0], cities2[:,1],c='r',s=180)
        plt.plot(cities2[:,0],cities2[:,1],c='r',linewidth=2)
        plt.scatter(cities3[:,0], cities3[:,1],c='b',s=150)
        plt.plot(cities3[:,0],cities3[:,1],c='r',linewidth=2)

    else:
        plt.scatter(cities2[:,0], cities2[:,1],c='g',s=180)
        plt.plot(cities2[:,0],cities2[:,1],c='g',linewidth=2)
        plt.scatter(cities3[:,0], cities3[:,1],c='b',s=150)
        plt.plot(cities3[:,0],cities3[:,1],c='g',linewidth=2)

    plt.axis( [-100,4100,-100,2100] )
    plt.axis('off')

    plt.title('(3)  2-Opt Tour {:6.1f}'.format(l_min))
    plt.savefig( ("%05d" % pic)+'.png')
    plt.clf()
    pic += 1
    print pic
github roberthangu / snn_object_recognition / classify-images-one-shot.py View on Github external
fig_settings = {
        'lines.linewidth': 0.5,
        'axes.linewidth': 0.5,
        'axes.labelsize': 'small',
        'legend.fontsize': 'small',
    }
    mplt.rcParams.update(fig_settings)
    mplt.figure(figsize=(13, 10))
    mplt.subplot(311)
    mplt.grid(True)
    mplt.axis([0, t_sim_time, -.2, len(C2_populations) - .8])
    for i in range(len(C2_populations)):
        st = C2_populations[i].get_data().segments[0].spiketrains[0]
        mplt.plot(st, np.ones_like(st) * i, '.')
    mplt.subplot(312)
    mplt.axis([0, t_sim_time, -.2, len(classifier_neurons) - .8])
    for i in range(len(classifier_neurons)):
        st = classifier_neurons[i].get_data().segments[0].spiketrains[0]
        mplt.plot(st, np.ones_like(st) * i, '.')
    mplt.subplot(313)
    mplt.axis([0, t_sim_time, -66, -49])
    for i in range(len(classifier_neurons)):
        segm = classifier_neurons[i].get_data().segments[0]
        voltages = segm.filter(name='v')[0]
        mplt.plot(voltages.times, voltages, label=str(i))
    mplt.savefig('plots/CLF/{}_{}.png'.format(results_label, appendix))
github lucasrodes / kPCA-denoising-python / data.py View on Github external
def main():
    "Example data generation"
    X, Y = get_curves(noise='normal', scale=0.2)
    import matplotlib.pyplot as plt
    plt.subplot2grid((3, 1), (0, 0))
    plt.axis('off')
    plt.plot(X, Y ,'k.')
    plt.subplot2grid((3, 1), (1, 0), rowspan = 2)
    plt.axis('off')
    X, Y = get_square(noise='normal', scale=0.2)
    plt.plot(X, Y ,'k.')
    plt.show()
github romeric / florence / Core / MeshGeneration / Mesh.py View on Github external
import matplotlib.pyplot as plt

		fig = plt.figure()
		plt.triplot(self.points[:,0],self.points[:,1], self.elements[:,:3])
		plt.tricontourf(self.points[:,0], self.points[:,1], self.elements[:,:3], np.ones(self.points.shape[0]), 100,alpha=0.3)

		for i in range(0,self.elements.shape[0]):
			coord = self.points[self.elements[i,:],:]
			x_avg = np.sum(coord[:,0])/self.elements.shape[1]
			y_avg = np.sum(coord[:,1])/self.elements.shape[1]
			plt.text(x_avg,y_avg,str(i),backgroundcolor='#F88379',ha='center')

		for i in range(0,self.points.shape[0]):
			plt.text(self.points[i,0],self.points[i,1],str(i),backgroundcolor='#0087BD',ha='center')

		plt.axis('equal')
		# plt.show(block=False)
		plt.show()
github photon-team / photon / photonai / processing / results_handler.py View on Github external
colors = [legend_theme2(1. * i / len(data)) for i in range(len(method_list))]
        ax2.set_prop_cycle("color", colors)
        data = []
        for k in method_list:
            data.append(np.sum([element[k]["total_seconds"] for name, element in result_dict.items() if k in element]))
        patches_an, _, _ = plt.pie([val/sum(data) for val in data],
                                   shadow=True,
                                   startangle=90,
                                   pctdistance=0.7,
                                   autopct=eval_mean_time_autopct(data))

        append_plotly(labels=method_list, values=[val / sum(data) for val in data], name="methods",
                           colors=[(col) for col in colors],
                           domain={'x': [0, 1], 'y': [0, 0.45]})

        plt.axis('equal')
        plt.title("methods")
        plt.legend(
            loc='lower left',
            labels=['%s' % l for l in method_list],
            prop={'size': 10},
            bbox_transform=fig.transFigure
        )

        # for only one legend
        #fig.legend(patches+patches_an, element_names+method_list, prop={'size': 10}, loc='lower left')

        if write_results:
            plt.savefig(os.path.join(self.output_settings.results_folder, 'time_monitor_pie.png'))
        plt.close()
        if plotly_return:
            str_fig = "var layout =" + str(plotly_dict["layout"]) + ";"
github jkirschner / evolverilog / selector.py View on Github external
pyplot.title(title)

    xlabel = options.get('xlabel', '')
    pyplot.xlabel(xlabel)

    ylabel = options.get('ylabel', '')
    pyplot.ylabel(ylabel)

    if 'xscale' in options:
        pyplot.xscale(options['xscale'])

    if 'yscale' in options:
        pyplot.yscale(options['yscale'])

    if 'axis' in options:
        pyplot.axis(options['axis'])

    loc = options.get('loc', 0)
    legend = options.get('legend', True)
    if legend:
        pyplot.legend(loc=loc)

    if formats is None:
        formats = ['eps', 'png', 'pdf']

    if root:
        for format in formats:
            saveFormat(root, format)

    show = options.get('show', False)
    if show:
        pyplot.show()
github jeina7 / Handwriting_styler / common / utils.py View on Github external
def show_comparison(font_num, real_targets, fake_targets, show_num=8):
    plt.figure(figsize=(14, show_num//2+1))
    for idx in range(show_num):
        plt.subplot(show_num//4, 8, 2*idx+1)
        plt.imshow(real_targets[font_num][idx].reshape(128, 128), cmap='gray')
        plt.title("Real [%d]" % font_num)
        plt.axis('off')

        plt.subplot(show_num//4, 8, 2*idx+2)
        plt.imshow(fake_targets[font_num][idx].reshape(128, 128), cmap='gray')
        plt.title("Fake [%d]" % font_num)
        plt.axis('off')
    plt.show()
github annusgit / ForestCoverChange / utilities / other_utils / file_utils / band_combinations.py View on Github external
def evaluate_threshold(images):
    # rgb, false, enhanced, ndvi = images
    # w = 2; h = 2
    fig = plt.figure(figsize=(2, 2))
    columns = 2
    rows = 2
    for i in range(columns * rows):
        images[i] = np.asarray(images[i])
        fig.add_subplot(rows, columns, i+1)
        if images[i].ndim == 2:
            plt.gray()
        plt.axis('off')
        plt.imshow(images[i])
    # fig.set_size_inches(np.array(fig.get_size_inches()) * len(images))
    plt.show()
    pass