Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
import random
im = image.transform_inverse(im_array, config.PIXEL_MEANS)
plt.imshow(im)
for j, name in enumerate(class_names):
if name == '__background__':
continue
color = (random.random(), random.random(), random.random()) # generate a random color
dets = detections[j]
for det in dets:
bbox = det[:4] * scale
score = det[-1]
rect = plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor=color, linewidth=3.5)
plt.gca().add_patch(rect)
plt.gca().text(bbox[0], bbox[1] - 2,
'{:s} {:.3f}'.format(name, score),
bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white')
plt.show()
labels=[
"sum",
"numpy.sum",
"accupy.kahan_sum",
"accupy.ksum[2]",
"accupy.ksum[3]",
"accupy.fsum",
],
colors=plt.rcParams["axes.prop_cycle"].by_key()["color"][:6],
n_range=n_range,
title="Sum(random(100, n))",
xlabel="n",
logx=True,
logy=True,
)
plt.gca().set_aspect(0.5)
lgd = plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)
# plt.show()
plt.savefig(
"speed-comparison2.svg",
transparent=True,
bbox_extra_artists=(lgd,),
bbox_inches="tight",
)
return
def plot_edge(edge, *args):
edge_seg = cdt.segment(edge)
pts = [ edge_seg.source(), edge_seg.target() ]
xs = [ pts[0].x(), pts[1].x() ]
ys = [ pts[0].y(), pts[1].y() ]
plt.plot( xs, ys, *args )
plt.hold(True)
for edge in cdt.finite_edges():
if cdt.is_constrained(edge):
plot_edge(edge, 'r-')
else:
if face_info[edge[0]].in_domain():
plot_edge(edge, 'b-')
rescale_plot(plt.gca())
plt.show()
def anomBarPlot(anom):
blue = '#2166AC'
red = '#B2182B'
colors = np.array([red]*anom.size)
colors[anom < 0] = blue
plt.bar(np.arange(anom.size), anom,color=colors,alpha=.5)
xlim = plt.xlim((0,118))
plt.hlines(0, xlim[0], xlim[1], colors='k')
plt.xlim((0,118))
yrs = np.arange(1895,2013)
loc = np.arange(5,118,10)
plt.xticks(loc,[str(yr) for yr in yrs[loc]],fontsize=17)
ax = plt.gca()
ax.set_axisbelow(True)
ax.yaxis.grid(color='gray', linestyle='dashed')
plt.plot(runningMean(anom),color='k',lw=2)
#plt.ylim((-2.5,2.5))
plt.xlabel("Year",fontsize=17)
plt.ylabel("Anomaly ($^\circ$C)",fontsize=17)
plt.setp(ax.get_yticklabels(), fontsize=17)
import matplotlib.mlab as mlb
plt.subplot(3, 1, 1)
plt.pcolormesh(segment_times, sample_freqs, 10 * np.log10(spec), cmap="jet")
plt.ylabel("Frequency [Hz]")
plt.xlabel("Time [sec]")
plt.subplot(3, 1, 2)
axes = plt.gca()
axes.set_xlim([0, duration])
tmp_axis = np.linspace(0, duration, wav_data.shape[0])
plt.plot(tmp_axis, wav_data / np.abs(np.max(wav_data)))
plt.xlabel("Time [sec]")
plt.subplot(3, 1, 3)
axes = plt.gca()
axes.set_xlim([0, duration])
tmp_axis = np.linspace(0, duration, vad_feat.shape[0])
plt.plot(tmp_axis, vad_feat)
plt.xlabel("Time [sec]")
plt.savefig("plots/" + key, bbox_inches="tight")
def plot_sharing(self):
if (self.METRICS['Sharing'] is not None and
np.max(self.METRICS['Sharing'])>1e-4 and
len(self.METRICS['NumberToWords']) <= 50):
#Find ordering
aux = list(enumerate(self.METRICS['NumberToWords']))
aux.sort(key = lambda x : x[1])
sorted_order = [_[0] for _ in aux]
cax = plt.gca().matshow(np.array(
self.METRICS['Sharing'])[sorted_order,:][:,sorted_order]
/self.S.usage_normalization)
plt.gca().set_xticklabels(['']+sorted(self.METRICS['NumberToWords']))
plt.gca().set_yticklabels(['']+sorted(self.METRICS['NumberToWords']))
plt.gca().xaxis.set_major_locator(ticker.MultipleLocator(1))
plt.gca().yaxis.set_major_locator(ticker.MultipleLocator(1))
if self.store_video:
plt.savefig(os.path.join(self.plot_name, 'video/sharing-rate_'+
str(self.step)))
plt.gcf().colorbar(cax)
plt.savefig(os.path.join(self.plot_name, 'sharing-rate'))
plt.clf()
def plot_detail(self, param):
for v in self.means.columns.levels[0]:
plt.figure()
axes = self.means[v].plot(
kind='barh', xerr=self.errors[v],
xlim=self.xlim, figsize=(15, 15), subplots=True, layout=(6, 2),
sharey=True, legend=False)
plt.gca().invert_yaxis()
for row in axes:
for ax in row:
ax.xaxis.grid(True)
ax.set_ylabel('')
ax.set_xlabel('Time (s)')
plt.savefig(os.path.join(RESULTS_PATH, '%s_%s.svg' % (param, v)))
S[i, :] = res
return S
def objective2_min(Z):
"""
Calculates the location (action) of the minimum for a given context
:param Z: context
:return: locations of minimums
"""
return objective2(Z, objective2_min_action(Z))
# Create figure with subplots
fig = plt.figure(figsize=(15, 10))
plt.hold(True)
ax1 = plt.gca()
###########################
# Objective 2: Hartmann 6 #
###########################
real_data = objective2_min(Z=np.random.uniform(size=(10,2))).flatten()
# Defining the bounds and dimensions of the input space
S_lower = np.array([0, 0, 0, 0])
S_upper = np.array([1, 1, 1, 1])
X_lower = np.array([-np.inf, -np.inf, 0, 0, 0, 0])
X_upper = np.array([np.inf, np.inf, 1, 1, 1, 1])
dims_Z = 2
dims_S = 4
def _plot_monthly_returns(self, stats, ax=None, **kwargs):
"""
Plots a heatmap of the monthly returns.
"""
returns = stats['returns']
if ax is None:
ax = plt.gca()
monthly_ret = perf.aggregate_returns(returns, 'monthly')
monthly_ret = monthly_ret.unstack()
monthly_ret = np.round(monthly_ret, 3)
monthly_ret.rename(
columns={1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr',
5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug',
9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'},
inplace=True
)
sns.heatmap(
monthly_ret.fillna(0) * 100.0,
annot=True,
fmt="0.1f",
annot_kws={"size": 8},
exponents = [1]
operators = {}
sym = sf.SymbolicFeatures(exponents=exponents, operators=operators)
features = sym.fit_transform(x)
ests = [Lasso, STRidge]
attrs = ["alpha", "threshold"]
names = ["Lasso", "STRidge"]
for est, attr, name in zip(ests, attrs, names):
models = net(est, features, y, attr, filter=True, max_coarsity=5, r_max=1e5)
m = sorted(models)
scores = np.array([models[k].score(features, y) for k in m])
plt.plot(m, scores, "o--", label=name)
plt.legend()
plt.xlabel("# coefficient")
plt.ylabel(r"$R^2$")
plt.gca().invert_xaxis()
plt.show()