How to use the matplotlib.pyplot.figure function in matplotlib

To help you get started, we’ve selected a few matplotlib examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github pkorus / neural-imaging / diff_nip.py View on Github external
# Develop images
    sample_ya = model_a.process(sample_x).numpy()
    sample_yb = model_b.process(sample_x).numpy()

    if patch_size > 0:
        print('Cropping a {p}x{p} patch from the middle'.format(p=patch_size))
        xx = (sample_x.shape[2] - patch_size // 2) // 2
        yy = (sample_x.shape[1] - patch_size // 2) // 2
        sample_x = sample_x[:, yy:yy+patch_size, xx:xx+patch_size, :]
        sample_y = sample_y[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
        sample_ya = sample_ya[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
        sample_yb = sample_yb[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]

    # Plot images
    fig = imdiff.compare_ab_ref(sample_y, sample_ya, sample_yb, fig=plt.figure(), extras=extras)

    if output_dir is not None:
        from tikzplotlib import save as tikz_save
        dcomp = [x for x in fsutil.split(model_b_dirname) if re.match('(ln-.*|[0-9]{3})', x)]
        tikz_save('{}/examples_{}_{}_{}_{}.tex'.format(output_dir, camera, image, model_a_dirname, model_b_dirname), figureheight='8cm', figurewidth='8cm', strict=False)
    else:
        fig.tight_layout()
        fig.show(fig)

    fig.suptitle('{}, A={}, B={}'.format(image, model_a.model_code, model_b.model_code))
    plt.show()
    plt.close(fig)
github nilearn / nilearn / examples / 02_decoding / plot_haxby_multiclass.py View on Github external
##############################################################################
# Now we compute cross-validation scores
from sklearn.cross_validation import cross_val_score

cv_scores_ovo = cross_val_score(svc_ovo, X, y, cv=5, verbose=1)

cv_scores_ova = cross_val_score(svc_ova, X, y, cv=5, verbose=1)

print('OvO:', cv_scores_ovo.mean())
print('OvA:', cv_scores_ova.mean())

##############################################################################
# Plot barplots of the prediction scores

from matplotlib import pyplot as plt
plt.figure(figsize=(4, 3))
plt.boxplot([cv_scores_ova, cv_scores_ovo])
plt.xticks([1, 2], ['One vs All', 'One vs One'])
plt.title('Prediction: accuracy score')

##############################################################################
# Plot a confusion matrix
#
# We fit on the the first 10 sessions and plot a confusion matrix on the
# last 2 sessions
from sklearn.metrics import confusion_matrix

svc_ovo.fit(X[session < 10], y[session < 10])
y_pred_ovo = svc_ovo.predict(X[session >= 10])

plt.matshow(confusion_matrix(y_pred_ovo, y[session >= 10]))
plt.title('Confusion matrix: One vs One')
github jungmannlab / picasso / picasso / imageprocess.py View on Github external
params = _lmfit.Parameters()
        params.add("a", value=FitROI.max(), vary=True, min=0)
        params.add("xc", value=0, vary=True)
        params.add("yc", value=0, vary=True)
        params.add("s", value=1, vary=True, min=0)
        params.add("b", value=FitROI.min(), vary=True, min=0)
        results = gaussian2d.fit(FitROI.flatten(), params)

        # Get maximum coordinates and add offsets
        xc = results.best_values["xc"]
        yc = results.best_values["yc"]
        xc += X_ + x_max_
        yc += Y_ + y_max_

        if display:
            _plt.figure(figsize=(17, 10))
            _plt.subplot(1, 3, 1)
            _plt.imshow(imageA, interpolation="none")
            _plt.subplot(1, 3, 2)
            _plt.imshow(imageB, interpolation="none")
            _plt.subplot(1, 3, 3)
            _plt.imshow(XCorr, interpolation="none")
            _plt.plot(xc, yc, "x")
            _plt.show()

        xc -= _np.floor(X / 2)
        yc -= _np.floor(Y / 2)

    return -yc, -xc
github MassimoCimmino / pygfunction / pygfunction / examples / fluid_temperature.py View on Github external
T_b[it],
                                             m_flow,
                                             cp_f)
    T_f_double_par = DoubleUTube_par.get_temperature(z,
                                                     T_f_in_double_par[it],
                                                     T_b[it],
                                                     m_flow,
                                                     cp_f)
    T_f_double_ser = DoubleUTube_ser.get_temperature(z,
                                                     T_f_in_double_ser[it],
                                                     T_b[it],
                                                     m_flow,
                                                     cp_f)

    plt.rc('figure')
    fig = plt.figure()

    ax3 = fig.add_subplot(131)
    # Axis labels
    ax3.set_xlabel(r'Temperature (degC)')
    ax3.set_ylabel(r'Depth from borehole head (m)')
    # Plot temperatures
    ax3.plot(T_f_single, z, 'b-', lw=1.5, label='Fluid')
    ax3.plot(np.array([T_b[it], T_b[it]]), np.array([0., H]), 'k--', lw=1.5,
             label='Borehole wall')
    ax3.legend()

    ax4 = fig.add_subplot(132)
    # Axis labels
    ax4.set_xlabel(r'Temperature (degC)')
    ax4.set_ylabel(r'Depth from borehole head (m)')
    # Plot temperatures
github victordibia / data2vis / utils / visualize_attention.py View on Github external
attention scores for for a single model predictions.
  """

    # Find out how long the predicted sequence is
    target_words = list(predictions_dict["predicted_tokens"])

    prediction_len = _get_prediction_length(predictions_dict)

    # Get source words
    source_len = predictions_dict["features.source_len"]
    source_words = predictions_dict["features.source_tokens"][:source_len]

    # Plot
    plot_data = predictions_dict["attention_scores"][:prediction_len, :
                                                     source_len]
    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(1, 1, 1)

    ax.matshow(plot_data, cmap='Blues')
    fontdict = {'fontsize': 14}

    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    print("".join([str(row) for row in source_words]).replace(
        "SEQUENCE_END", ""))
    print("========")
    print("".join([str(row) for row in target_words]).replace(
        "SEQUENCE_END", ""))

    #   print(source_words.join(""), " >>>>>>>>>>" , target_words.join(""))
github akrherz / iem / scripts / feature / coop / winter_storms.py View on Github external
doy = row[1]
        year = row[0].year
        storm_tot = tots[ year - 1900,-1]
        tots[ year - 1900, doy: ] = storm_tot + snow
        if not is_storm:
           # We are in a storm
           storm_tot = events[ year - 1900,-1]
           events[ year - 1900, doy: ] = storm_tot + 1
        is_storm = True
    else:
        is_storm = False

xticks = [1,32,62,93,124,155, 183, 214, 244]
xticklabels = ['1 Sep','1 Oct', '1 Nov', '1 Dec', '1 Jan','1 Feb', '1 Mar', '1 Apr', '1 May']

fig = plt.figure()
ax3 = fig.add_subplot(111)
v = numpy.average(tots,0)
ax3.plot( numpy.arange(0,260), v / float(max(v)) * 100., lw=2, label="Accumulation %.1f in" % (max(v),) )
v = numpy.average(events,0)
ax3.plot( numpy.arange(0,260), v / float(max(v)) * 100., lw=2, label="Events %.1f" % (max(v),) )
ax3.set_xticks(xticks)
ax3.set_xticklabels(xticklabels)
ax3.set_xlim(31,245)
ax3.set_title("Des Moines Total Snowfall\nEach Winter between 1900-2013")
#ax3.plot([32,135], [avgV,avgV], color='k')
ax3.grid(True)
ax3.set_yticks([0,10,25,50,75,100])
#ax3.set_ylim(0,31)  
ax3.set_ylabel("Percentage of Average Total")
ax3.legend(loc=2)
github matteorr / coco-analyze / analysisAPI.py View on Github external
# Create vertex coordinates for each grid cell...
        # (<0,0> is at the top left of the grid in this system)
        x, y = np.meshgrid(np.arange(nx), np.arange(ny))
        x, y = x.flatten(), y.flatten()
        points = np.vstack((x,y)).T

        for poly_verts in b['segmentation']:
            path = mplPath.Path(np.array([[x,y] for x,y in zip(poly_verts[0::2],poly_verts[1::2])]))

            grid = path.contains_points(points)
            grid = grid.reshape((ny,nx))

            the_mask += np.array(grid, dtype=int)
        segm_heatmap += imresize(the_mask,(128,128))

    fig = plt.figure(figsize=(10,10))
    ax = plt.subplot(111)
    ax.imshow(segm_heatmap)
    plt.savefig('%s/fn_heatmaps.pdf'%loc_dir,bbox_inches='tight')
    plt.close()

    f.write("\nDone, (t=%.2fs)."%(time.time()-tic))
    f.close()
github xipeng13 / RED-Net / pylib / FaceLogParse / parse_log_srnn_ete_decreg_train.py View on Github external
def plot_log(logfile_path, train_dict, test_dict):
    num = len(train_dict)
    train_num_iters = [train_dict[i]['NumIters'] for i in range(num) if i%2 != 0]
    train_los = [train_dict[i]['loss_det'] for i in range(num) if i%2 != 0]
    train_acc = [train_dict[i]['acc'] for i in range(num) if i%2 !=0] 
    train_los_reg = [train_dict[i]['loss_reg'] for i in range(num) if i%2 != 0]
    
    train_num_iters = train_num_iters[1::1]
    train_los = train_los[1::1]
    train_acc = train_acc[1::1]
    train_los_reg = train_los_reg[1::1]

    fig = plt.figure(1)
    plt.subplot(211)
    plt.plot(train_num_iters, train_los, 'g.-', label='train loss_det')
    plt.plot(train_num_iters, train_los_reg, 'r.-', label='train loss_reg')
    plt.legend(loc='upper center', ncol=2)
    plt.subplot(212)
    plt.plot(train_num_iters, train_acc, 'b.-', label='train acc')
    plt.legend(loc='lower center', ncol=2)
    #plt.show()

    log_basename = os.path.basename(logfile_path)
    #train_filename = os.path.join(output_dir, log_basename + '.png')
    train_filename = os.path.join(logfile_path + '.png')
    fig.savefig(train_filename)
github rugbyprof / Parking-Lot-Occupancy-Tracking / 02-OriginalMaterials / Anthony_ / newExtract_spots.py View on Github external
cv2.normalize(h1, h1_norm)
            h1_norm.flatten()

            d = cv2.compareHist(h1_norm, hist_norm, method)
            results[k] = d
    
        # sort the results
        results = sorted([(v, k) for (k, v) in results.items()], reverse = reverse)
        # show the query image
        fig = plt.figure("Query")
        ax = fig.add_subplot(1, 1, 1)
        ax.imshow(spots["1_Gray_Spot"])
        plt.axis("off")
    
        # initialize the results figure
        fig = plt.figure("Results: %s" % (methodName))
        fig.suptitle(methodName, fontsize = 20)
    
        # loop over the results
        for (i, (v, k)) in enumerate(results):
            # show the result
            ax = fig.add_subplot(1, len(spots), i + 1)
            ax.set_title("%s: %.2f" % (k, v))
            plt.imshow(spots[k])
            plt.axis("off")
    
    # show the OpenCV methods
    plt.show()
github matteorr / coco-analyze / analysisAPI / backgroundFalsePosErrors.py View on Github external
f.write("\nNumber of people in images with Background False Positives:\n")
    f.write(" - No people:         [%d]\n"%no_people)
    f.write(" - One person:        [%d]\n"%one)
    f.write(" - Small group (2-4): [%d]\n"%small_grp)
    f.write(" - Large Group (5-8): [%d]\n"%large_grp)
    f.write(" - Crowd       (>=9): [%d]\n"%crowd)

    f.write("\nArea size (in pixels) of Background False Positives:\n")
    f.write(" - Small    (%d,%d):            [%d]\n"%(areaRngs[0][0],areaRngs[0][1],small))
    f.write(" - Medium   (%d,%d):         [%d]\n"%(areaRngs[1][0],areaRngs[1][1],medium))
    f.write(" - Large    (%d,%d):         [%d]\n"%(areaRngs[2][0],areaRngs[2][1],large))
    f.write(" - X-Large  (%d,%d):        [%d]\n"%(areaRngs[3][0],areaRngs[3][1],xlarge))
    f.write(" - XX-Large (%d,%d): [%d]\n"%(areaRngs[4][0],areaRngs[4][1],xxlarge))

    plt.figure(figsize=(10,10))
    plt.imshow(ar_pic,origin='lower')
    plt.colorbar()
    plt.title('BBox Aspect Ratio',fontsize=20)
    plt.xlabel('Width (px)',fontsize=20)
    plt.ylabel('Height (px)',fontsize=20)
    path = "%s/bckd_false_pos_bbox_aspect_ratio.pdf"%(loc_dir)
    plt.savefig(path, bbox_inches='tight')
    plt.close()

    fig, ax = plt.subplots(figsize=(10,10))
    plt.imshow(ar_pic_2,origin='lower')
    plt.xticks(xrange(1,len(ar_bins)+1),["%d"%(x) for x in ar_bins],rotation='vertical')
    plt.yticks(xrange(1,len(ar_bins)+1),["%d"%(x) for x in ar_bins])
    plt.colorbar()
    plt.grid()
    plt.title('BBox Aspect Ratio',fontsize=20)