How to use the matplotlib.pyplot.ylabel function in matplotlib

To help you get started, we’ve selected a few matplotlib examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github SeanTater / uncc2014watsonsim / scripts / gensim / scatter.py View on Github external
linebuf = raw_input("Please enter some words to plot, or empty for a canned list: ")
while linebuf:
	buf += linebuf + " "
	linebuf = raw_input("... ")


labels = buf.split() \
    or "doctor nurse politician senator lawyer barrister defend accuse heal treat cure elect vote".split() 

vs = [a.w(x) for x in labels if a.w(x) is not None  ]
flatplot = TSNE(2)
ps = flatplot.fit_transform(vs)

plt.title("Reduced vector space model")
plt.xlabel("First Principal Component")
plt.ylabel("Second Principal Component")
plt.scatter(ps[:, 0], ps[:, 1])
for (x, y), label in zip(ps, labels):
    print "plotting %f, %f, %s" %(x, y, label)
    plt.annotate(label, xy = (x, y), xytext = (0, 0), textcoords = 'offset points')

plt.show()
github wradlib / wradlib / wradlib / vis.py View on Github external
returnax = False
        fig = pl.figure()
        ax = fig.add_subplot(111)
    else:
        returnax = True
    # actual plotting
    for y in np.arange(0, 10000., vert_res):
        ax.axhline(y=y, color="grey")
    for x in ranges:
        ax.axvline(x=x, color="grey")
    for i in range(len(elevs)):
        ax.plot(ranges, alt[i, :], lw=2, color="black")
    pl.ylim(top=maxalt)
    ax.tick_params(labelsize="large")
    pl.xlabel("Range (m)", size="large")
    pl.ylabel("Height over radar (m)", size="large")
    for i, elev in enumerate(elevs):
        x = ranges[-1] + 1500.
        y = alt[i, :][-1]
        if y > maxalt:
            ix = np.where(alt[i, :] < maxalt)[0][-1]
            x = ranges[ix]
            y = maxalt + 100.
        pl.text(x, y, str(elev), fontsize="large")

    if returnax:
        return ax
    pl.show()
github broadinstitute / cms / cms / model / plot_func.py View on Github external
target_vals = flattenList(target_vals)
			model_vals = flattenList(model_vals)
			target_ses = flattenList(target_ses)
			model_ses = flattenList(model_ses)

			plt.figure()
			plt.title("Fst, target vs. model calcs, " + str(numReps) + " reps")
			ind = [x + .6 for x in np.arange(len(popPairs))]
			ind2 = [x + 1 for x in np.arange(len(popPairs))]
			plt.bar(ind, target_vals, color = targetcolor, width =.4,  label="target", yerr=target_ses)
			plt.bar(ind2, model_vals, color = modelcolor, width =.4, yerr=model_ses, label="model")
			plt.legend(loc='best')
			plt.xticks(ind2, popPairLabels, fontsize=10)
			plt.xlabel('pop pair')
			plt.ylabel('Fst')
			plt.show()
			plt.close()
	return
github d2l-ai / d2l-zh / d2lzh / utils.py View on Github external
trainer = gluon.Trainer(net.collect_params(),
                            trainer_name, trainer_hyperparams)
    for _ in range(num_epochs):
        start = time.time()
        for batch_i, (X, y) in enumerate(data_iter):
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            trainer.step(batch_size)
            if (batch_i + 1) * batch_size % 100 == 0:
                ls.append(eval_loss())
    print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
    set_figsize()
    plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
    plt.xlabel('epoch')
    plt.ylabel('loss')
github neuropoly / spinalcordtoolbox / spinalcordtoolbox / process_segmentation / script.py View on Github external
x_display[int(z_centerline_voxel[i] - z_centerline_voxel[0])] = x_centerline[i]
            y_display[int(z_centerline_voxel[i] - z_centerline_voxel[0])] = y_centerline[i]

        plt.figure(1)
        plt.subplot(2, 1, 1)
        plt.plot(z_centerline_voxel, x_display, 'ro')
        plt.plot(z_centerline_voxel, x_centerline_voxel)
        plt.xlabel("Z")
        plt.ylabel("X")
        plt.title("x and x_fit coordinates")

        plt.subplot(2, 1, 2)
        plt.plot(z_centerline_voxel, y_display, 'ro')
        plt.plot(z_centerline_voxel, y_centerline_voxel)
        plt.xlabel("Z")
        plt.ylabel("Y")
        plt.title("y and y_fit coordinates")
        plt.show()

    # Create an image with the centerline
    min_z_index, max_z_index = int(round(min(z_centerline_voxel))), int(round(max(z_centerline_voxel)))
    for iz in range(min_z_index, max_z_index + 1):
        data[int(round(x_centerline_voxel[iz - min_z_index])), int(round(y_centerline_voxel[iz - min_z_index])), int(iz)] = 1  # if index is out of bounds here for hanning: either the segmentation has holes or labels have been added to the file
    # Write the centerline image in RPI orientation
    # hdr.set_data_dtype('uint8') # set imagetype to uint8
    sct.printv('\nWrite NIFTI volumes...', verbose)
    im_seg.data = data
    im_seg.setFileName('centerline_RPI.nii.gz')
    im_seg.changeType('uint8')
    im_seg.save()

    sct.printv('\nSet to original orientation...', verbose)
github jianhaod / Kaggle / 1.1_Titanic / src / Titanic.py View on Github external
# Age/Survived
    fig, ax = plt.subplots(1, 2, figsize = (18, 8))
    sns.violinplot("Pclass", "Age", hue="Survived", data=train_data, split=True, ax=ax[0])
    ax[0].set_title('Pclass and Age vs Survived')
    ax[0].set_yticks(range(0, 110, 10))
    
    sns.violinplot("Sex", "Age", hue="Survived", data=train_data, split=True, ax=ax[1])
    ax[1].set_title('Sex and Age vs Survived')
    ax[1].set_yticks(range(0, 110, 10))
    
    # Age
    plt.figure(figsize = (12, 5))
    plt.subplot(121)
    DataSet['Age'].hist(bins=70)
    plt.xlabel('Age')
    plt.ylabel('Num')

    plt.subplot(122)
    DataSet.boxplot(column='Age', showfliers=False)
    plt.show()

    facet = sns.FacetGrid(DataSet, hue = "Survived", aspect = 4)
    facet.map(sns.kdeplot, 'Age', shade = True)
    facet.set(xlim = (0, DataSet['Age'].max()))
    facet.add_legend()
    
    # average survived passsengers by age
    fig, axis1 = plt.subplots(1, 1, figsize = (18, 4))
    DataSet["Age_int"] = DataSet["Age"].astype(int)
    average_age = DataSet[["Age_int", "Survived"]].groupby(['Age_int'], as_index = False).mean()
    sns.barplot(x = 'Age_int', y = 'Survived', data = average_age)
github racinmat / anime-style-transfer / code / autoencoders / dimension_reduction_playground.py View on Github external
def plot_network_history(history, suffix):
    plt.plot(history.history['loss'])
    plt.plot(history.history['val_loss'])
    name = 'model train vs validation loss, ' + suffix
    plt.title(name)
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.legend(['train', 'validation'], loc='upper right')
    plt.savefig(f'figures/{name}.png')
    plt.show()
github lawlite19 / MachineLearning_TensorFlow / CNNModel_EarlyStopping_Save_Restore / CNNModel_EarlyStopping_Save_Restore.py View on Github external
def plot_confusion_matrix(cls_pred):
    cls_true = data.test.cls
    cm = confusion_matrix(cls_true, cls_pred)
    print(cm)
    plt.matshow(cm)
    plt.xlabel("Predicted")
    plt.ylabel("True")
    plt.show()
'''define a function to predict using batch'''
github jhu-asco / aerial_autonomy / scripts / analysis / plot_velocity_based_position_controller_data.py View on Github external
plt.subplot(2, 2, 1)
  plt.plot(ts, data[error_names[plot_axis]])
  plt.ylabel(error_names[plot_axis])
  plt.subplot(2, 2, 2)
  plt.plot(ts, data[cumulative_error_names[plot_axis]])
  plt.ylabel(cumulative_error_names[plot_axis])
  plt.xlabel('Time (seconds)')
  plt.subplot(2, 2, 3)
  plt.plot(ts, data[control_names[plot_axis]])
  plt.ylabel(control_names[plot_axis])
  plt.xlabel('Time (seconds)')
  plt.subplot(2, 2, 4)
  plt.plot(ts, -data[goal_names[plot_axis]] + data[error_names[plot_axis]])
  plt.plot(ts, data[goal_names[plot_axis]])
  plt.legend(['position', 'goal'])
  plt.ylabel(state_goal_names[plot_axis])
  plt.xlabel('Time (seconds)')
plt.show()
github PhanLeSon03 / Mic_Array / Python / BF / BeamForming.py View on Github external
R[iMic, jMic, :] = tempR[512:]
                else:
                    R[iMic, jMic, :] = tempR[512:]
        '''
    import matplotlib.pyplot as plt
    plt.figure()
    plt.plot(R[0, 1, :])
    plt.plot(R[0, 2, :], 'g')
    plt.plot(R[0, 3, :], 'r')
    plt.plot(R[0, 4, :], 'y')
    # plt.cohere(Noise[:,0], Noise[:,1],NFFT=128, Fs=16000)
    # plt.cohere(Noise[:, 0], Noise[:, 3],NFFT=128,Fs=16000)
    # plt.cohere(Noise[:, 0], Noise[:, 5],NFFT=128, Fs=16000)
    # plt.cohere(Noise[:, 0], Noise[:, 7],NFFT=128, Fs=16000)
    plt.xlabel('frequency [Hz]')
    plt.ylabel('Coherence')
    plt.axis([0, 513, -0.5, 1])
    plt.show()

    return R