Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
np.set_printoptions(precision=2)
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, np.around(cm[i, j], decimals=2),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True labels')
plt.xlabel('Predicted labels')
plt.savefig(title + ".png")
return
def plot_activity_timeline(data,xlabel,ylabel,title, log=False,loc=False):
p = data
for u in users:
p[p['user'] == u]['value'].plot(legend=False,logy=False,label=u)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.xlabel(xlabel, fontsize=20)
plt.ylabel(ylabel, fontsize=20)
plt.title(title, fontsize=20)
plt.tight_layout()
plt.xticks(rotation=45)
if loc != False:
savePlots(loc,plt)
return
return plt.show()
x1_min, x2_min = np.min(data3, axis=0)
x1_max, x2_max = np.max(data3, axis=0)
x1_min, x1_max = expand(x1_min, x1_max)
x2_min, x2_max = expand(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.grid(True)
plt.subplot(428)
plt.title(u'数量不相等KMeans++聚类')
plt.scatter(data3[:, 0], data3[:, 1], c=y3_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.grid(True)
plt.tight_layout(2)
plt.suptitle(u'数据分布对KMeans聚类的影响', fontsize=18)
# https://github.com/matplotlib/matplotlib/issues/829
plt.subplots_adjust(top=0.92)
plt.show()
# Plot peak trains to compare them visually.
plt.figure()
# Plot generated peak train.
x = [t for t in self.generated_peak_train]
y = [0.0 for _ in x]
plt.scatter(x, y, c='C1', marker='|')
# Plot detected peak trains.
detected_peak_trains = self.detected_peak_trains
for k in range(0, self.nb_channels):
x = [t for t in detected_peak_trains[k]]
y = [float(k + 1) for _ in x]
plt.scatter(x, y, c='C0', marker='|')
plt.xlabel("time (arb. unit)")
plt.ylabel("peak train")
plt.title("Peak trains comparison")
plt.tight_layout()
plt.show()
return
def plot_check_batch(self,b,images):
filename = "/data/batch_check_"+str(b)+".png"
subplot_size = int(np.sqrt(images.shape[0]))
plt.figure(figsize=(10,10))
for i in range(images.shape[0]):
plt.subplot(subplot_size, subplot_size, i+1)
image = images[i, :, :, :]
image = np.reshape(image, [self.H,self.W,self.C])
plt.imshow(image)
plt.axis('off')
plt.tight_layout()
plt.savefig(filename)
plt.close('all')
return
def plot_exposure_vs_energy(self):
"""Plot exposure versus energy."""
import matplotlib.pyplot as plt
plt.figure(figsize=(4, 3))
plt.plot(self.energy, self.exposure, color="black", lw=3)
plt.semilogx()
plt.xlabel("Energy (MeV)")
plt.ylabel("Exposure (cm^2 s)")
plt.xlim(1e4 / 1.3, 1.3 * 1e6)
plt.ylim(0, 1.5e11)
plt.tight_layout()
plt.bar(
left = [0,1,2],
height = pre0[0]*100,
tick_label = ["Setosa","Versicolor","Virginica"]
)
plt.tight_layout() # グラフ同士のラベルが重ならない程度にグラフを小さくする。
# 所属クラスの確率を棒グラフ表示(1,2)
plt.subplot(2,2,2) # plt.subplot(行数, 列数, 何番目のプロットか)
plt.ylim( 0,100 ) # y軸の範囲(0~100)
plt.bar(
left = [0,1,2],
height = pre1[0]*100,
tick_label = ["Setosa","Versicolor","Virginica"]
)
plt.tight_layout() # グラフ同士のラベルが重ならない程度にグラフを小さくする。
# 所属クラスの確率を棒グラフ表示(2,1)
plt.subplot(2,2,3) # plt.subplot(行数, 列数, 何番目のプロットか)
plt.ylim( 0,100 ) # y軸の範囲(0~100)
plt.bar(
left = [0,1,2],
height = pre2[0]*100,
tick_label = ["Setosa","Versicolor","Virginica"]
)
plt.tight_layout() # グラフ同士のラベルが重ならない程度にグラフを小さくする。
# 所属クラスの確率を棒グラフ表示(2,1)
plt.subplot(2,2,4) # plt.subplot(行数, 列数, 何番目のプロットか)
plt.ylim( 0,100 ) # y軸の範囲(0~100)
plt.bar(
left = [0,1,2],
assert nblocks > 0
ncols = int(np.ceil(np.sqrt(width/height * nblocks)))
nrows = int(np.ceil(nblocks / ncols))
ncols = nblocks if nrows == 1 else ncols
figure = plt.figure(figsize=(width, height))
for i, block in enumerate(blocks):
plt.subplot(nrows, ncols, i + 1)
plt.imshow(block, interpolation='nearest', aspect='auto')
plt.colorbar()
plt.tight_layout()
if filename is not None:
plt.savefig(filename)
if show:
plt.show()
plt.close(figure)
color="g",
label="random",
)
diffs = "_".join(difficulties)
title = f"agents_eval_{diffs}.png"
plt.ylabel("Env")
plt.xlabel("Win Percentage")
plt.title(title)
plt.yticks(index + bar_width * 2, labels)
plt.legend()
day_time = datetime.now().strftime("%Y_%m_%d_%H_%M")
plt.savefig(f"images/{day_time}{title}.png", bbox_inches="tight")
plt.tight_layout()
plt.show()
##
expo = 1. # stretching/squeezing for visualization
for v in ['mke','eke','mpe','epe','ke','pe']:
D1[v] = (D1[v]/1e3)**expo # from joule to kilojoule by /1e3
D2[v] = (D2[v]/1e3)**expo
## PLOTTING
levs=[]
for v in ['mke','eke','mpe','epe']:
maxs = np.max((np.max(D1[v]),np.max(D2[v])))
levs.append(np.linspace(0,maxs*0.95,64))
fig,axs = plt.subplots(2,4,figsize=(9,5),sharex=True,sharey=True)
plt.tight_layout(rect=[0,.08,1,0.98])
fig.subplots_adjust(wspace=0.03,hspace=0.03)
n = axs.shape[1]
caxs = [0,]*n
for i in range(n):
pos = axs[-1,i].get_position()
caxs[i] = fig.add_axes([pos.x0,0.11,pos.width,0.03])
qaxs = np.empty_like(axs)
tiks = [np.array([0,100,200,300]),np.array([0,100,200,300]),np.array([0,1,2,3,4,5]),np.array([0,1,2,3,4,5])]
qaxs[0,0] = axs[0,0].contourf(param1['x_T'],param1['y_T'],h2mat(D1['mke'],param1),levs[0],cmap=cm.thermal,extend='max')
cb1 = fig.colorbar(qaxs[0,0],cax=caxs[0],orientation='horizontal',ticks=tiks[0]**expo)
cb1.set_ticklabels(tiks[0])
cb1.set_label(r'[kJm$^{-2}$]')