How to use the matplotlib.pyplot.xlim function in matplotlib

To help you get started, we’ve selected a few matplotlib examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github JorgeDeLosSantos / nusa / examples / beam / beam_6_encastre.py View on Github external
for n in nodos: m.add_node(n)
for e in elementos: m.add_element(e)

m.add_constraint(nodos[0], ux=0, uy=0, ur=0)
m.add_force(nodos[-1], (-P,))
m.solve()

m.plot_disp(1, label="Approx.")

xx = np.linspace(0,L)
d = ((-P*xx**2.0)/(6.0*E*I))*(3*L - xx)
plt.plot(xx, d, label="Classic")
plt.legend()
plt.axis("auto")
plt.xlim(0,L+1)

m.show()
github KeplerGO / pyke / kepffi.py View on Github external
# print FFI and source location data on plot
    plt.clf()
    plt.axes([0.73,0.09,0.25,0.4])
    plt.text(0.1,1.0,'      KepID: %s' % pkepid,fontsize=12)
    plt.text(0.1,0.9,' RA (J2000): %s' % pra,fontsize=12)
    plt.text(0.1,0.8,'Dec (J2000): %s' % pdec,fontsize=12)
    plt.text(0.1,0.7,'     KepMag: %s' % pkepmag,fontsize=12)
    plt.text(0.1,0.6,'   SkyGroup: %2s' % skygroup,fontsize=12)
    plt.text(0.1,0.5,'     Season: %2s' % str(season),fontsize=12)
    plt.text(0.1,0.4,'    Channel: %2s' % channel,fontsize=12)
    plt.text(0.1,0.3,'     Module: %2s' % module,fontsize=12)
    plt.text(0.1,0.2,'     Output: %1s' % output,fontsize=12)
    plt.text(0.1,0.1,'     Column: %4s' % column,fontsize=12)
    plt.text(0.1,0.0,'        Row: %4s' % row,fontsize=12)
    plt.setp(plt.gca(),xticklabels=[],xticks=[],yticklabels=[],yticks=[])
    plt.xlim(0.0,1.0)
    plt.ylim(-0.05,1.12)

# clear button
    plt.axes([0.73,0.87,0.25,0.09])
    plt.text(0.5,0.5,'CLEAR',fontsize=24,weight='heavy',
               horizontalalignment='center',verticalalignment='center')
    plt.setp(plt.gca(),xticklabels=[],xticks=[],yticklabels=[],yticks=[])
    plt.fill([0.0,1.0,1.0,0.0,0.0],[0.0,0.0,1.0,1.0,0.0],'#ffffee')
    plt.xlim(0.0,1.0)
    plt.ylim(0.0,1.0)
    aid = plt.connect('button_press_event',clicker1)

# dump custom aperture to file button
    plt.axes([0.73,0.77,0.25,0.09])
    plt.text(0.5,0.5,'DUMP',fontsize=24,weight='heavy',
               horizontalalignment='center',verticalalignment='center')
github Nospoko / qrs-tutorial / utils / plotters.py View on Github external
ax2 = fig.add_subplot(3,1,2, sharex=ax1)
    ax2.plot(times,
             qrs_values,
             'C1',
             lw = 4,
             alpha = 0.888)
    ax3 = fig.add_subplot(3,1,3, sharex=ax1)
    ax3.plot(times,
             qrs_gauss,
             'C3',
             lw = 4,
             alpha = 0.888)
    plt.setp(ax1.get_xticklabels(), visible=False)
    plt.setp(ax2.get_xticklabels(), visible=False)
    plt.xlabel('Time [s]')
    plt.xlim([0, 2.5])
    plt.show()
github asuni / wavelet_prosody_toolkit / wavelet_prosody_toolkit / prosody_labeller.py View on Github external
plt.subplots_adjust(hspace=0)

        # Plot individual signals
        ax[0].plot(pitch, linewidth=1)
        ax[0].set_ylabel("Pitch", rotation="horizontal", ha="right", va="center")

        ax[1].plot(energy, linewidth=1)
        ax[1].set_ylabel("Energy", rotation="horizontal", ha="right", va="center")

        ax[2].plot(rate, linewidth=1)
        ax[2].set_ylabel("Speech rate", rotation="horizontal", ha="right", va="center")

        # Plot combined signal
        ax[3].plot(params, linewidth=1)
        ax[3].set_ylabel("Combined \n signal", rotation="horizontal", ha="right", va="center")
        plt.xlim(0, len(params))

        # Wavelet and loma
        cwt[cwt>0] = np.log(cwt[cwt>0]+1.)
        cwt[cwt<-0.1] = -0.1
        ax[4].contourf(cwt,100, cmap="inferno")
        loma.plot_loma(pos_loma, ax[4], color="black")
        loma.plot_loma(neg_loma, ax[4], color="white")
        ax[4].set_ylabel("Wavelet & \n LOMA", rotation="horizontal", ha="right", va="center")
        
        # Add labels
        prom_text =  prominences[:, 1]/(np.max(prominences[:, 1]))*2.5 + 0.5
        lab.plot_labels(labels, ypos=0.3, size=6, prominences=prom_text, fig=ax[5], boundary=False, background=False)
        ax[5].set_ylabel("Labels", rotation="horizontal", ha="right", va="center")
        for i in range(0, len(labels)):
            for a in [0, 1, 2, 3, 4, 5]:
                ax[a].axvline(x=labels[i][0], color='black',
github tensorflow / cleverhans / cleverhans / model_zoo / deep_k_nearest_neighbors / dknn.py View on Github external
below = preds_conf <= bin_end
    else:
      below = preds_conf < bin_end
    mask = np.multiply(above, below)
    num_points.append(np.sum(mask))
    bin_mean_acc = max(0, np.mean(preds_l[mask] == labels[mask]))
    reliability_diag.append(bin_mean_acc)

  # Plot diagram
  assert len(reliability_diag) == len(bins_center)
  print(reliability_diag)
  print(bins_center)
  print(num_points)
  fig, ax1 = plt.subplots()
  _ = ax1.bar(bins_center, reliability_diag, width=.1, alpha=0.8)
  plt.xlim([0, 1.])
  ax1.set_ylim([0, 1.])

  ax2 = ax1.twinx()
  print(sum(num_points))
  ax2.plot(bins_center, num_points, color='r', linestyle='-', linewidth=7.0)
  ax2.set_ylabel('Number of points in the data', fontsize=16, color='r')

  if len(np.argwhere(confidence[0] != 0.)) == 1:
    # This is a DkNN diagram
    ax1.set_xlabel('Prediction Credibility', fontsize=16)
  else:
    # This is a softmax diagram
    ax1.set_xlabel('Prediction Confidence', fontsize=16)
  ax1.set_ylabel('Prediction Accuracy', fontsize=16)
  ax1.tick_params(axis='both', labelsize=14)
  ax2.tick_params(axis='both', labelsize=14, colors='r')
github boland1992 / SeisSuite / build / lib / seissuite / ant / preprocess.py View on Github external
def spectrum(tr):

    wave = tr.data #this is how to extract a data array from a mseed file
    fs = tr.stats.sampling_rate
                
                #hour = str(hour).zfill(2) #create correct format for eqstring
    f, Pxx_spec = signal.welch(wave, fs, 'flattop', 1024, scaling='spectrum')
                    #plt.semilogy(f, np.sqrt(Pxx_spec))
    plt.title("Frequency Density Plot of PNG Earthquake from station PMG.IU")
    plt.plot(f, np.sqrt(Pxx_spec))
    plt.xlim([0, 5])
    #plt.ylim([0, 0.01])
            
    plt.xlabel('frequency [Hz]')
    plt.ylabel('Linear spectrum [V RMS]')
    plt.show()
github litepresence / extinction-event / EV / DEV / EV0.00000003.py View on Github external
textx = 0.27 * (plt.xlim()[1] - plt.xlim()[0]) + plt.xlim()[0]
    texty = 0.7 * (plt.ylim()[1] - plt.ylim()[0]) + plt.ylim()[0]
    storage['text'].append(plt.text(textx, texty,
                                    'EXTINCTION EVENT', color='aqua',
                                    alpha=0.3, size=25, weight='extra bold'))
    textx = 0.1 * (plt.xlim()[1] - plt.xlim()[0]) + plt.xlim()[0]
    texty = 0.08 * (plt.ylim()[1] - plt.ylim()[0]) + plt.ylim()[0]
    storage['text'].append(
        plt.text(textx, texty, '(BTS) litepresence1',
                 color='white', alpha=0.5, size=10, weight='extra bold'))
    textx = 0.4 * (plt.xlim()[1] - plt.xlim()[0]) + plt.xlim()[0]
    texty = 0.1 * (plt.ylim()[1] - plt.ylim()[0]) + plt.ylim()[0]
    storage['text'].append(
        plt.text(textx, texty, (ASSET + CURRENCY),
                 color='yellow', alpha=0.1, size=70, weight='extra bold'))
    textx = 0.6 * (plt.xlim()[1] - plt.xlim()[0]) + plt.xlim()[0]
    texty = 0.05 * (plt.ylim()[1] - plt.ylim()[0]) + plt.ylim()[0]
    text = 'BACKTEST '
    if info['live']:
        text = 'LIVE '
    text += storage['asset_name']
    storage['text'].append(
        plt.text(textx, texty, text,
                 color='yellow', alpha=0.25, size=20, weight='extra bold'))

    # dynamic text
    if info['live']:
        high = storage['cex_rate']
        low = storage['cex_rate']
    else:
        high = storage['high'][-1]
        low = storage['low'][-1]
github slinderman / pyhawkes / experiments / hippocampus.py View on Github external
for i,k in enumerate(node_perm):
        color = wheel_cmap((np.pi+pfs_th[k])/(2*np.pi))
        # alpha = pfs_rad[k] / 47
        alpha = 0.7
        ax.add_patch(Circle((pfs[k,0], pfs[k,1]),
                            radius=3+4*pf_size[k],
                            color=color, ec="none",
                            alpha=alpha)
                            )

    plt.title("True place fields")
    # ax.text(0, 45, "True Place Fields",
    #         horizontalalignment="center",
    #         fontdict=dict(size=9))
    plt.xlim(-45,45)
    plt.xticks([-40, -20, 0, 20, 40])
    plt.xlabel("$x$ [cm]")
    plt.ylim(-45,45)
    plt.yticks([-40, -20, 0, 20, 40])
    plt.ylabel("$y$ [cm]")
    plt.savefig(os.path.join(results_dir, "hipp_colored_locations.pdf"))


    # Plot the inferred weighted adjacency matrix
    fig = create_figure(figsize=(1.8, 1.8))
    ax = create_axis_at_location(fig, .4, .4, 1.1, 1.1)

    Weff = np.array(Weffs[N_samples//2:]).mean(0)
    Weff = Weff[np.ix_(node_perm, node_perm)]
    lim = Weff[(1-np.eye(K)).astype(np.bool)].max()
    im = ax.imshow(np.kron(Weff, np.ones((20,20))),
github rparini / cxroots / cxroots / Contour.py View on Github external
def _sizePlot(self):
        import matplotlib.pyplot as plt
        t = np.linspace(0,1,1000)
        z = self(t)
        xpad = (max(np.real(z))-min(np.real(z)))*0.1
        ypad = (max(np.imag(z))-min(np.imag(z)))*0.1

        xmin = min(np.real(z))-xpad
        xmax = max(np.real(z))+xpad
        ymin = min(np.imag(z))-ypad
        ymax = max(np.imag(z))+ypad
        plt.xlim([xmin, xmax])
        plt.ylim([ymin, ymax])
github landlab / landlab / landlab / components / uniform_precip / examples / coupled_rainfire.py View on Github external
def create_thresh_plot(fire_arr,storm_arr, exceed_arr, max_intense=1000):

    # This function takes the different arrays of fire, storm and threshold-
    # exceeding events and plots them to show potentially erosion-inducing storms.

    plt.figure(1)
    plt.xlabel('Time (years)', fontsize=16) ## x axis label
    plt.ylabel('Rainfall Intensity (mm/day)', fontsize=16) ## y axis label
    plt.title('Randomly Generated Rainfall Time Series', fontsize=18) ## chart title
    ax = plt.gca()
    tick_locations=[0, 3652.42, 7304.84, 10957.26, 14609.68, 18262.1, 21914.52, 25566.96, 29219.36, 32871.78, 36524.2]#labels = range(ticks.size)
    tick_labels=[0,10,20,30,40,50,60,70,80,90,100]
    plt.xticks(tick_locations, tick_labels)
    ax.tick_params(labelsize=16)
    plt.ylim(ymin=0, ymax=max_intense)
    plt.xlim(0, 36524.2)
    for f in fire_arr:
        y = fire_arr.index(f)
        start = fire_arr[y][0]
        end = fire_arr[y][0] + 1.0
        plt.broken_barh([(start, 1)], ((max_intense-200),max_intense), label='Fire', color='orange')

    for s in storm_arr:
        x = storm_arr.index(s) ##creates rainfall graph. x=length of storm. y=intensity
        start = storm_arr[x][0]
        end = storm_arr[x][1] - storm_arr[x][0]
        plt.broken_barh([(start, end)], (0,storm_arr[x][2]), label='Rain', color = 'blue') ## for each Tr period

    for t in exceed_arr:
        z = exceed_arr.index(t)
        start = exceed_arr[z][0]
        end = exceed_arr[z][1] - exceed_arr[z][0]