Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def show_color_maching_table(self, title, colors_ref_table):
import matplotlib.pyplot as plt
import matplotlib.patches as patches
fig = plt.figure()
ax = fig.add_subplot(111, aspect='equal')
plt.title(title)
sz = 1.0 / (2.0 * len(self.matched_colors))
delta_y = sz * 0.5
for c in self.matched_colors:
tokens = c.split('/')
if len(tokens[1]) == 0:
tokens[1] = tokens[0]
ax.add_patch(patches.Rectangle((sz, delta_y), sz, sz, facecolor="#" + tokens[0], edgecolor="#" + tokens[1]))
rect_title = tokens[0]
if tokens[0] != tokens[1]:
rect_title += "/" + tokens[1]
ax.text(2.5 * sz, delta_y, rect_title + " -> ")
ref_color = colors_ref_table[self.matched_colors[c]]
ax.add_patch(patches.Rectangle((0.3 + sz, delta_y), sz, sz, facecolor="#" + ref_color))
ax.text(0.3 + 2.5 * sz, delta_y, ref_color + " (" + self.matched_colors[c] + ")")
delta_y += sz * 2.0
plt.show()
plt.ylabel("Velocity [m/s]")
plt.legend(loc="best")
if(flag_savefig): plt.savefig(savefig_file + "velocity" + ".png")
plt.figure()
plt.title("Mass")
plt.plot(time, m, marker="o", label="Mass")
for line in prob.time_knots():
plt.axvline(line, color="k", alpha=0.5)
plt.grid()
plt.xlabel("time [s]")
plt.ylabel("Mass [kg]")
if(flag_savefig): plt.savefig(savefig_file + "mass" + ".png")
plt.figure()
plt.title("Acceleration")
plt.plot(time, a_r, marker="o", label="Acc r")
plt.plot(time, a_t, marker="o", label="Acc t")
plt.plot(time, a_mag, marker="o", label="Acc")
for line in prob.time_knots():
plt.axvline(line, color="k", alpha=0.5)
plt.grid()
plt.xlabel("time [s]")
plt.ylabel("Acceleration [m/s2]")
if(flag_savefig): plt.savefig(savefig_file + "acceleration" + ".png")
plt.figure()
plt.title("Thrust profile")
plt.plot(time, Tr / 1000, marker="o", label="Tr")
plt.plot(time, Tt / 1000, marker="o", label="Tt")
plt.plot(time, T / 1000, marker="o", label="Thrust")
plt.plot(time, Dr / 1000, marker="o", label="Dr")
if self.test_method_validity_P(T, P, method_P):
try:
p = self.calculate_P(T, P, method_P)
if self.test_property_validity(p):
properties.append(p)
Ts2.append(T)
except:
pass
plt.plot(Ts2, properties, label=method_P)
else:
properties = [self.calculate_P(T, P, method_P) for T in Ts]
plt.plot(Ts, properties, label=method_P)
plt.legend()
plt.ylabel(self.name + ', ' + self.units)
plt.xlabel('Temperature, K')
plt.title(self.name + ' of ' + self.CASRN)
plt.show()
+ "-" + str(my_drone.position_z) + "-" + str(my_drone.position_r))
print("Action: " + str(action) + " (" + my_drone.actions_dict[action] + ")")
print("Image shape: " + str(observation[0].shape))
print("")
cumulated_reward += reward
if done: break
print("Finished after: " + str(step+1) + " steps")
print("Cumulated Reward: " + str(cumulated_reward))
print("Rendering GIF, please wait...")
my_drone.render(file_path='./drone_landing.gif', mode='gif')
for i in range(len(observation)): observation[i] = np.pad(observation[i], ((3, 3), (3, 3)), 'constant', constant_values=0)
img = (np.concatenate(observation, axis=1)*255.0).astype(np.uint8)
plt.title("Last observation (4 images)")
imgplot = plt.imshow(img, cmap='gray',vmin=0,vmax=255)
plt.show()
plt.title("World")
imgplot = plt.imshow(my_drone.floor, cmap='gray',vmin=0,vmax=255)
plt.show()
print("Complete!")
plt.scatter(X_res_vis[~idx_class_0, 0], X_res_vis[~idx_class_0, 1],
alpha=.8, label='Class #1')
plt.scatter(X_vis[idx_samples_removed, 0], X_vis[idx_samples_removed, 1],
alpha=.8, label='Removed samples')
# make nice plotting
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))
ax.set_xlim([-6, 6])
ax.set_ylim([-6, 6])
plt.title('Under-sampling using neighbourhood cleaning rule')
plt.legend()
plt.tight_layout()
plt.show()
g = obj.GMe / R**2
# ------------------------
# Visualizetion
plt.figure()
plt.title("Altitude profile")
plt.plot(time, (R - obj.Re)/1000, marker="o", label="Altitude")
for line in prob.time_knots():
plt.axvline(line, color="k", alpha=0.5)
plt.grid()
plt.xlabel("time [s]")
plt.ylabel("Altitude [km]")
if(flag_savefig): plt.savefig(savefig_file + "altitude" + ".png")
plt.figure()
plt.title("Velocity")
plt.plot(time, v, marker="o", label="Velocity")
for line in prob.time_knots():
plt.axvline(line, color="k", alpha=0.5)
plt.grid()
plt.xlabel("time [s]")
plt.ylabel("Velocity [m/s]")
if(flag_savefig): plt.savefig(savefig_file + "velocity" + ".png")
plt.figure()
plt.title("Mass")
plt.plot(time, m, marker="o", label="Mass")
for line in prob.time_knots():
plt.axvline(line, color="k", alpha=0.5)
plt.grid()
plt.xlabel("time [s]")
plt.ylabel("Mass [kg]")
# Load simulation results into numpy arrays
vb, vc, Ivcc = map(ngspyce.vector, ['Vb', 'Vc', 'I(Vcc)'])
# Correct the sign for collector current
ic = -Ivcc
plt.figure()
# Plot one line per base voltage
series = np.unique(vb)
for _vb in series:
plt.plot(vc[vb == _vb], ic[vb == _vb], '-',
label='Vb = {:.1f}'.format(_vb))
plt.legend(loc='center right')
plt.title('Output characteristics for BC337')
plt.xlabel('Collector-emitter voltage [V]')
plt.ylabel('Collector current [A]')
plt.savefig('bc337.png')
plt.show()
sample_test = minmax_scale.transform(sample_test)
# Pick training size number of samples from each distro
training_input = {key: (sample_train[label_train == k, :])[:training_size]
for k, key in enumerate(class_labels)}
test_input = {key: (sample_test[label_test == k, :])[:test_size]
for k, key in enumerate(class_labels)}
if plot_data:
if not HAS_MATPLOTLIB:
raise NameError('Matplotlib not installed. Plase install it before plotting')
for k in range(0, 2):
plt.scatter(sample_train[label_train == k, 0][:training_size],
sample_train[label_train == k, 1][:training_size])
plt.title("PCA dim. reduced Breast cancer dataset")
plt.show()
return sample_train, training_input, test_input, class_labels
for i in range(0, len(Data)):
p = plot_bar(Data[i], ind, bottom, Colors[i], Hatch[i], True)
Parts.append(p[0])
bottom = [0]
NewColors = [Colors[0], Colors[1], Colors[3]]
for i in range(0, len(PhysbamData[0])):
p = plot_bar([PhysbamData[1][i]],
np.array([WN+1]),
bottom, NewColors[i], Hatch[i], True)
Parts.append(p[0])
title = 'PhysBAM Water Simulation Size 256 Cube, 64 uniform partitions, 100 projection iteration\n'
title += '8 c3.2xlarge EC2 workers each with 8 threads, c3.4xlarge controller with 8 assigning threads\n'
title += 'worker templates disabled'
plt.title(title)
xticks = []
for i in range(1, WN + 1):
xticks.append('W' + str(i) + ' (old/new)')
xticks.append("mean (old/new)")
xticks.append("PhysBAM\n(worst in 6 samples/average)")
ind = np.arange(N+1)
plt.xticks(ind+width/2., xticks )
plt.ylabel('Time (seconds)')
plt.xlim(-0.5, N+1)
plt.ylim(0, 40)
plt.legend(reversed(Parts), reversed(Legends))
plt.show()
plt.xlabel("Epoch")
plt.savefig(self.save_folder / "graphs/federated_training_loss.png")
plt.close()
plt.figure()
plt.plot(self.score_matrix_collective_models[: self.epoch_index + 1, self.minibatch_count])
plt.ylabel("Accuracy")
plt.xlabel("Epoch")
# plt.yscale('log')
plt.ylim([0, 1])
plt.savefig(self.save_folder / "graphs/federated_training_acc.png")
plt.close()
plt.figure()
plt.plot(self.score_matrix_per_partner[: self.epoch_index + 1, self.minibatch_count - 1, ])
plt.title("Model accuracy")
plt.ylabel("Accuracy")
plt.xlabel("Epoch")
plt.legend(["partner " + str(i) for i in range(self.partners_count)])
# plt.yscale('log')
plt.ylim([0, 1])
plt.savefig(self.save_folder / "graphs/all_partners.png")
plt.close()