Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_out_vel():
# Plot velocities as function of time for one period
fig, ax = plt.subplots(nrows=3, sharex=True, figsize=(8,8))
ax[0].plot(dates_out, vAs)
ax[0].set_ylabel(r"$v_A$ km/s")
ax[1].plot(dates_out, vBs)
ax[1].set_ylabel(r"$v_B$ km/s")
ax[2].plot(dates_out, vCs)
ax[2].set_ylabel(r"$v_C$ km/s")
ax[-1].set_xlabel("date")
fig.savefig(outdir + "orbit_out_vel.png", dpi=400)
for n_atoms in n_atoms_range:
for sparsity in sparsity_range:
for n_times_atom in n_times_atom_range:
for n_times_valid in n_times_valid_range:
for func in all_func:
print('%d/%d, %s' % (k, n_runs, func.__name__))
k += 1
results.append(
run_one(n_atoms, sparsity, n_times_atom,
n_times_valid, func))
df = pd.DataFrame(results, columns=[
'n_atoms', 'sparsity', 'n_times_atom', 'n_times_valid', 'func',
'duration'
])
fig, axes = plt.subplots(2, 2, figsize=(10, 8))
axes = axes.ravel()
def plot(index, ax):
pivot = df.pivot_table(columns='func', index=index, values='duration',
aggfunc=gmean)
pivot.plot(ax=ax)
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_ylabel('duration')
plot('n_atoms', axes[0])
plot('n_times_atom', axes[1])
plot('sparsity', axes[2])
plot('n_times_valid', axes[3])
plt.tight_layout()
plt.show()
:param bg_conf: background component configuration
:param dyn_conf: dynamic component configuration
:param sta_confs: static component configurations list
:return: None
"""
import matplotlib.pyplot as plt
im_name_list = os.listdir(dyn_conf.get('ext_dir', None))
im_path_list = []
for im_name in im_name_list:
im_path_list.append(os.path.join(dyn_conf.get('ext_dir', None), im_name))
im_path = im_path_list[0]
bg = combination_prev(im_path, bg_conf, dyn_conf, sta_confs)
fig, ax = plt.subplots()
ax.imshow(bg)
plt.show()
def plot(self):
"""
"""
self.fig, self.ax = plt.subplots()
self.line, = self.ax.plot(self.x, self.z, 'b.',
picker=10) # 5 points tolerance
# Plot the bad ones
self.ax.plot(self.x[self.baseflag==False],
self.z[self.baseflag==False], 'r^')
# Plot the dubious ones
self.ax.plot(
self.x[self.humanflag=='doubt'],
self.z[self.humanflag=='doubt'],
'D', color='magenta')
self.ax.plot(self.x[self.fails], self.z[self.fails], 'o', ms=12,
alpha=0.4, color='cyan', visible=True)
idsizes = [i / MB for i in idsizes]
andsizes = [i / MB for i in andsizes]
xorsizes = [i / MB for i in xorsizes]
_, ideval = utils.dir_evaltime(idfiles)
_, andeval = utils.dir_evaltime(andfiles)
_, xoreval = utils.dir_evaltime(xorfiles)
ideval, andeval, xoreval = ideval[1:], andeval[1:], xoreval[1:]
# sizeexp = [(4 ** 5.39) * (x ** 2) for x in xs]
# evalexp = [(4 ** 5.84) * (x ** 2) / 1000 for x in xs]
ind = np.arange(len(xs))
width = 0.2
fig, axes = plt.subplots(nrows=1, ncols=3)
ax1 = axes.flat[0]
p1 = ax1.bar(ind + width, idtimes, width, color='black')
p2 = ax1.bar(ind + 2 * width, andtimes, width, color='gray')
p3 = ax1.bar(ind + 3 * width, xortimes, width, color='white')
ax1.legend((p1[0], p2[0], p3[0]), ('ID', 'AND', 'XOR'), loc='upper left')
ax1.set_xlabel(r'Security Parameter')
ax1.set_ylabel(r'Time (minutes)')
ax1.set_xticks(ind + 0.5)
ax1.set_xticklabels(xs)
ax1 = axes.flat[1]
p1 = ax1.bar(ind + width, idsizes, width, color='black')
p2 = ax1.bar(ind + 2 * width, andsizes, width, color='gray')
def _plot_trace(self, samples, latent_samples):
if self.log_dir is not None:
fig, ax = plt.subplots(self.x_dim, 2, figsize=(10, self.x_dim), sharex=True)
for i in range(self.x_dim):
ax[i, 0].plot(samples[0, :, i])
ax[i, 1].plot(latent_samples[0, 0:1000, i])
plt.savefig(os.path.join(self.log_dir, 'plots', 'trace.png'))
plt.close()
def plot_power(self, ax=None, coi=True):
"""Create a basic wavelet power plot with time on the
x-axis, scale on the y-axis, and a cone of influence
overlaid.
Requires matplotlib.
"""
import matplotlib.pyplot as plt
if not ax:
fig, ax = plt.subplots()
Time, Scale = np.meshgrid(self.time, self.scales)
ax.contourf(Time, Scale, self.wavelet_power, 100)
ax.set_yscale('log')
ax.grid(True)
if coi:
coi_time, coi_scale = self.coi
ax.fill_between(x=coi_time,
y1=coi_scale,
y2=self.scales.max(),
color='gray',
alpha=0.3)
ax.set_xlim(self.time.min(), self.time.max())
def keystone_quantitative_feature_plot(net_path, networkNames, figurePath, featurePath, featureFile, features, percentNodes, bcMinValue):
networks,treatments = get_network_fullnames(networkNames)
edgetype = 'pos'
colName = nx.betweenness_centrality.__name__.replace('_',' ').capitalize()
#modName = nm.node_modularity.__name__.replace('_',' ').capitalize()
fig, axes = plt.subplots(len(features))
netNames = treatments
for location in networkNames.keys():
for ax,f in zip(axes,features):
featureValues = []
for i,t in enumerate(treatments):
featureValues.append([])
featureTableFile = os.path.join(featurePath,featureFile+'_{0}_{1}_{2}.txt'.format(edgetype,location,t))
featureTable = np.loadtxt(featureTableFile,delimiter='\t', dtype='S1000')
centcol = np.where(featureTable[0,:]==colName)[0][0]
nodes = featureTable[np.where(featureTable[:,centcol]!=NOT_A_NODE_VALUE)][1:,0]
featcol = np.where(featureTable[0,:]==f)[0][0]
#modcol = np.where(featureTable[0,:]==modName)[0][0]
bcvalues = featureTable[1:,centcol]
bcvalues = bcvalues[np.where(bcvalues!=NOT_A_NODE_VALUE)]
bcvalues= list([float(k) for k in bcvalues])
Author: R. Cersonsky
Keywords:
key - string corresponding to molecule built by
import_molecules
img_name - filename under which to cache the image
"""
from ase.data import covalent_radii, atomic_numbers
from matplotlib import pyplot, patches
from ase.data.colors import jmol_colors
style = {
"horizontalalignment": "center",
"verticalalignment": "center",
"fontsize": 12
}
fig, ax = pyplot.subplots(1)
for i, p in enumerate(self.positions[key]):
an = atomic_numbers[self.symbols[key][i]]
ax.text(*p[:2],
s=self.labels[key][i],
**style,
zorder=p[-1]+0.01
)
ax.add_artist(patches.Circle(p[:2],
covalent_radii[an],
facecolor=jmol_colors[an],
edgecolor='k',
alpha=0.95,
zorder=p[-1]))
ax.axis('off')
bounds = [*np.min(self.positions[key], axis=0), *
def processPlot_loss_GANs(path, iteration, d_loss, g_loss):
fig, (Ax0, Ax1) = plt.subplots(2, 1, figsize = (8, 20))
x = np.arange(0, iteration, 1)
Ax0.plot(x, d_loss)
Ax0.set_title('Model D Loss vs Iterations')
Ax0.set_ylabel('loss value')
Ax0.grid(True)
Ax1.plot(x, g_loss)
Ax1.set_title('Model G Loss vs Iterations')
Ax1.set_xlabel('iteration times')
Ax1.set_ylabel('loss value')
Ax1.grid(True)
plt.show()