How to use the matplotlib.pyplot.close function in matplotlib

To help you get started, we’ve selected a few matplotlib examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Neuroinflab / kCSD-python / figures / kCSD_properties / kCSD1D_test_fig1_and_fig2.py View on Github external
Loop that decides the random number seed for the CSD profile,
    electrode configurations and etc.
    """
    #TrueCSD
    t_csd_x, t_csd_y, true_csd = generate_csd_1D(src_width, nm, srcs=srcs,
                                                 start_x=0, end_x=1.,
                                                 start_y=0, end_y=1,
                                                 res_x=100, res_y=100)
    if type(noise) ==  float:
        n_spec = [noise]
    else:
        n_spec = noise
    RMS_wek = np.zeros(len(n_spec))
    LandR = np.zeros((2, len(n_spec)))
    for i, noise in enumerate(n_spec):
        plt.close('all')
        noise = np.round(noise, 5)
        print('numer rekonstrukcji: ', i, 'noise level: ', noise)
        #Electrodes
        ele_pos, pots = electrode_config(total_ele, true_csd, t_csd_x, t_csd_y, inpos, lpos)
        ele_y = ele_pos[:, 1]
        gdX = 0.01
        x_lims = [0, 1] #CSD estimation place
        np.random.seed(srcs)
        pots += (np.random.rand(total_ele)*np.max(abs(pots))-np.max(abs(pots))/2)*noise

        k, est_csd, est_pot = do_kcsd(ele_y, pots, h=1., gdx=gdX,
                                      xmin=x_lims[0], xmax=x_lims[1], n_src_init=1e4)

        save_as = nm + '_noise' + str(np.round(noise*100, 1))
        if name == 'lc':
            m_norm = k.m_norm
github nanoporetech / pomoxis / pomoxis / catalogue_errors.py View on Github external
y_pos = np.arange(len(df) + 1)
    no_error_score = -10 * np.log10(1/ref_len)
    ax.barh(y_pos, df['remaining_err_rate_q'].append(pd.Series(no_error_score)), align='center', color='green', ecolor='black')
    ax.set_xlabel('Q(Accuracy)')
    ax.set_ylabel('Error Class')
    ax.set_ylim((y_pos[0]-0.5, y_pos[-1]+0.5))
    ax.set_yticks(y_pos)
    ax.set_yticklabels(['total error'] + list(df['klass']))
    ax.invert_yaxis()  # labels read top-to-bottom
    xstart, xend = ax.get_xlim()
    ystart, yend = ax.get_ylim()
    ax.text(xend - 2.25, ystart - 0.25, '+')
    ax.set_title('Q-score after removing error class')
    fp = os.path.join(outdir, '{}_remaining_errors.png'.format(prefix))
    fig.savefig(fp)
    plt.close()
github GalDude33 / Fetal-MRI-Segmentation / fetal / evaluate.py View on Github external
prediction_image = nib.load(prediction_file)
        prediction = prediction_image.get_data()
        rows.append([dice_coefficient(func(truth), func(prediction)) for func in masking_functions])

    df = pd.DataFrame.from_records(rows, columns=header, index=subject_ids)
    df.to_csv("./prediction/brats_scores.csv")

    scores = dict()
    for index, score in enumerate(df.columns):
        values = df.values.T[index]
        scores[score] = values[np.isnan(values) == False]

    plt.boxplot(list(scores.values()), labels=list(scores.keys()))
    plt.ylabel("Dice Coefficient")
    plt.savefig("validation_scores_boxplot.png")
    plt.close()

    if os.path.exists("./training.log"):
        training_df = pd.read_csv("./training.log").set_index('epoch')

        plt.plot(training_df['loss'].values, label='training loss')
        plt.plot(training_df['val_loss'].values, label='validation loss')
        plt.ylabel('Loss')
        plt.xlabel('Epoch')
        plt.xlim((0, len(training_df.index)))
        plt.legend(loc='upper right')
        plt.savefig('loss_graph.png')
github annayqho / TheCannon / thecannon / Version1.1 / cannon1_train_model.py View on Github external
# Baseline spectrum with continuum
    baseline_spec = coeffs_all[:,0]
    plt.plot(lambdas, baseline_spec)
    contpix_lambda = list(np.loadtxt("pixtest4_lambda.txt", 
        usecols = (0,), unpack =1))
    y = [1]*len(contpix_lambda)
    plt.scatter(contpix_lambda, y)
    plt.title("Baseline Spectrum with Continuum Pixels")
    plt.xlabel(r"Wavelength $\lambda (\AA)$")
    plt.ylabel(r"$\theta_0$")
    filename = "baseline_spec_with_cont_pix.png"
    print "Diagnostic plot: fitted 0th order spectrum, cont pix overlaid." 
    print "Saved as %s" %filename
    plt.savefig(filename)
    plt.close()

    # Leading coefficients for each label
    nlabels = len(pivots)
    fig, axarr = plt.subplots(nlabels, sharex=True)
    plt.xlabel(r"Wavelength $\lambda (\AA)$")
    for i in range(nlabels):
        ax = axarr[i]
        ax.set_ylabel(r"$\theta_%s$" %i)
        ax.set_title("%s" %label_names[i])
        ax.plot(lambdas, coeffs_all[:,i+1])
    print "Diagnostic plot: leading coefficients as a function of wavelength."
    filename = "leading_coeffs.png"
    print "Saved as %s" %filename
    fig.savefig(filename)
    plt.close(fig)
github jweyn / DLWP / examples / plot_movie.py View on Github external
m.drawcoastlines(color=(0.7, 0.7, 0.7))
        m.drawparallels(np.arange(0., 91., 30.), color=(0.5, 0.5, 0.5))
        m.drawmeridians(np.arange(0., 361., 60.), color=(0.5, 0.5, 0.5))
        if filler is not None:
            m.pcolormesh(x, y, filler.values, vmin=np.min(laplace_range), vmax=np.max(laplace_range),
                         cmap=laplace_colormap)
        cs = plot_fn(x, y, da.values, contours, cmap=plot_colormap)
        plt.clabel(cs, fmt='%1.0f')
        ax.text(0.01, 0.01, title, horizontalalignment='left', verticalalignment='bottom', transform=ax.transAxes)

    plot_panel(0, verif, 'Observed (%s)' % datetime.strftime(time, '%HZ %e %b %Y'), fill[0])
    plot_panel(1, forecast, 'DLWP (%s)' % datetime.strftime(time, '%HZ %e %b %Y'), fill[1])

    if file_name is not None:
        plt.savefig(file_name, bbox_inches='tight', dpi=200)
    plt.close()
github audreyqyfu / LATE / scripts / scimpute.py View on Github external
hist.append(corr)
    hist.sort()
    median_corr = round(np.median(hist), 3)
    mean_corr = round(np.mean(hist), 3)
    print(title)
    print('median corr: {}    mean corr: {}'.format(median_corr, mean_corr))

    # histogram of correlation
    fig = plt.figure(figsize=(5, 5))
    plt.hist(hist, bins=100, density=True)
    plt.xlabel('median=' + str(median_corr) + ', mean=' + str(mean_corr))
    plt.ylabel('Density') #todo freq to density
    plt.xlim(-1, 1)
    plt.title(title)
    plt.savefig(fprefix + ".png", bbox_inches='tight') #todo remove \n from out-name
    plt.close(fig)
    return hist
github mikegallimore / NHL_Single / chart_units_pairings_teammates_lines_onice_xg.py View on Github external
if team == away:
            plt.savefig(charts_units_pairings_teammates + 'onice_xg_away_pairings_teammates_lines.png', bbox_inches='tight', pad_inches=0.2)
        elif team == home:
            plt.savefig(charts_units_pairings_teammates + 'onice_xg_home_pairings_teammates_lines.png', bbox_inches='tight', pad_inches=0.2)    
        
        # exercise a command-line option to show the current figure
        if images == 'show':
            plt.show()
        
        
        ###
        ### CLOSE
        ###
        
        plt.close(fig)
        
        # status update
        print('Plotting ' + team + ' pairings with lines 5v5 on-ice shots.')   
        
    # status update
    print('Finished plotting the 5v5 on-ice shots for pairings with lines.')
github ZhaoJ9014 / face.evoLVe.PyTorch / util / utils.py View on Github external
def gen_plot(fpr, tpr):
    """Create a pyplot plot and save to buffer."""
    plt.figure()
    plt.xlabel("FPR", fontsize = 14)
    plt.ylabel("TPR", fontsize = 14)
    plt.title("ROC Curve", fontsize = 14)
    plot = plt.plot(fpr, tpr, linewidth = 2)
    buf = io.BytesIO()
    plt.savefig(buf, format = 'jpeg')
    buf.seek(0)
    plt.close()

    return buf
github DyogenIBENS / PhylDiag / src / benchmark / comparePhylDiagAndADHORESbsToSimulatedSbs.py View on Github external
if not (i == 1 and j == 2):
            ax.set_yticklabels(['{:3.1f}%'.format(x * 100) for x in vals])
        else:
            ax.set_yticklabels(['{:3.0f}%'.format(x * 100) for x in vals])

    # Legend
    lines = linesPhylDiag + [lineADhoRe] # + [lineTrue]
    labelsPhylDiag = ['PhylDiag (' + ','.join(vs) + ')' for vs in variableArg_str[1]]
    labels = labelsPhylDiag + ['i-ADHoRe 3.0'] #+ ['Simulation']
    titleLegend = '(' + ','.join(variableArg_str[0]) + ')'
    assert len(lines) == len(labels)
    fig.legend(lines, labels, ncol=4, title=titleLegend, loc='upper center', fontsize=15)
    fig.tight_layout()
    plt.show(block=True)
    plt.savefig(arguments['outFigureName'], format='svg')
    plt.close()