Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def save_visualization(X, nh_nw=(batch_size,2+frames), save_path='../results/%s/sample.jpg'%(sys.argv[4])):
X = morph(X)
print(X.shape)
h,w = X.shape[1], X.shape[2]
img = np.zeros((h * nh_nw[0], w * nh_nw[1], 3))
for n,x in enumerate(X):
j = n // nh_nw[1]
i = n % nh_nw[1]
img[j*h:j*h+h, i*w:i*w+w, :] = x[:,:,:3]
np.save("%s.%s"%(save_path.split(".")[0],".npy"), img)
scipy.misc.imsave(save_path, img)
# Check for constant, if none add one, see Greene 2003, pg. 222
# if constant == False:
# X = np.hstack((np.ones((n,1)),X))
# Check for multicollinearity in the X matrix
ci = condition_index(reg)
if ci > 30:
white_result = "Not computed due to multicollinearity."
return white_result
# Compute cross-products and squares of the regression variables
if type(X).__name__ == 'ndarray':
A = np.zeros((n, (k * (k + 1)) // 2))
elif type(X).__name__ == 'csc_matrix' or type(X).__name__ == 'csr_matrix':
# this is probably inefficient
A = SP.lil_matrix((n, (k * (k + 1)) // 2))
else:
raise Exception("unknown X type, %s" % type(X).__name__)
counter = 0
for i in range(k):
for j in range(i, k):
v = spmultiply(X[:, i], X[:, j], False)
A[:, counter] = v
counter += 1
# Append the original variables
A = sphstack(X, A) # note: this also converts a LIL to CSR
n, k = A.shape
# Check to identify any duplicate or constant columns in A
omitcolumn = []
for i in range(k):
def log_image(np_img, np_confidences, np_boxes, np_global_step,
pred_or_true):
merged = train_utils.add_rectangles(hyp, np_img, np_confidences,
np_boxes,
use_stitching=True,
rnn_len=hyp['rnn_len'])[0]
num_images = 10
filename = '%s_%s.jpg' % \
((np_global_step // hyp['logging']['write_iter'])
% num_images, pred_or_true)
img_path = os.path.join(hyp['dirs']['output_dir'], filename)
scp.misc.imsave(img_path, merged)
return merged
for rp in range(len(self.estimates.ind_new)*2):
out.write(vid_frame)
cv2.imshow('frame', vid_frame)
for rp in range(len(self.estimates.ind_new)*2):
cv2.imshow('frame', vid_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
t += 1
t_online.append(time() - t_frame_start)
self.Ab_epoch.append(self.estimates.Ab.copy())
if self.params.get('online', 'normalize'):
self.estimates.Ab /= 1./self.img_norm.reshape(-1, order='F')[:,np.newaxis]
self.estimates.Ab = csc_matrix(self.estimates.Ab)
self.estimates.A, self.estimates.b = self.estimates.Ab[:, self.params.get('init', 'nb'):], self.estimates.Ab[:, :self.params.get('init', 'nb')].toarray()
self.estimates.C, self.estimates.f = self.estimates.C_on[self.params.get('init', 'nb'):self.M, t - t //
epochs:t], self.estimates.C_on[:self.params.get('init', 'nb'), t - t // epochs:t]
noisyC = self.estimates.noisyC[self.params.get('init', 'nb'):self.M, t - t // epochs:t]
self.estimates.YrA = noisyC - self.estimates.C
if self.estimates.OASISinstances is not None:
self.estimates.bl = [osi.b for osi in self.estimates.OASISinstances]
self.estimates.S = np.stack([osi.s for osi in self.estimates.OASISinstances])
self.estimates.S = self.estimates.S[:, t - t // epochs:t]
else:
self.estimates.bl = [0] * self.estimates.C.shape[0]
self.estimates.S = np.zeros_like(self.estimates.C)
if self.params.get('online', 'ds_factor') > 1:
dims = Y_.shape[1:]
self.estimates.A = hstack([coo_matrix(cv2.resize(self.estimates.A[:, i].reshape(self.dims, order='F').toarray(),
dims[::-1]).reshape(-1, order='F')[:,None]) for i in range(self.N)], format='csc')
def test():
# read rf and tr arrays from mat file
mat_contents = sio.loadmat(pathdat+'mrf_t1t2b0pd_mrf_randphasecyc_traintest.mat');
far = np.array(mat_contents["rf"].astype(np.complex128).squeeze())
trr = np.array(mat_contents["trr"].astype(np.float64).squeeze())
# input MRF time courses
mat_contents2 = sio.loadmat(pathdat+'datax1.mat');
data_x = np.array(mat_contents2["datax1"]).astype(np.float64)
# prepare for sequence simulation, y->x_hat
Nk = far.shape[0]
Nexample = data_x.shape[0]
ti = 10 #ms
M0 = np.array([0.0,0.0,1.0]).astype(np.float64)
#image size
nx = 217
ny = 181
# mask in ksp
mask = ut.mask3d( nx, ny, Nk, [15,15,0], 0.4)
#FTm = opts.FFT2d_kmask(mask)
FTm = cuopts.FFT2d_cuda_kmask(mask)
#intial timing
timing = utc.timing()
def mytest(*args):
"""
Hypothesis test for test_self_defined_statistical_tests
"""
mytest.__name__ = "Test name"
_, pval = stats.ks_2samp(*args)
return pval
def test_scipy_2p(self):
# carry out fit
S = bl.Study()
S.loadData(np.array([1, 2, 3, 4, 5]))
L = bl.om.SciPy(scipy.stats.norm, 'loc', bl.cint(0, 7, 200), 'scale', bl.oint(0, 1, 200))
S.setOM(L)
S.setTM(bl.tm.Static())
S.fit()
# test model evidence value
np.testing.assert_almost_equal(S.logEvidence, -13.663836264357225, decimal=5,
err_msg='Erroneous log-evidence value.')
for line in fileinput.input():
[o, va, ia, vb, ib] = [float(x.strip()) for x in line.split(',')]
target.append(o)
voltages_a.append(va)
currents_a.append(ia)
voltages_b.append(vb)
currents_b.append(ib)
plot(voltages_a, '.', label='va')
plot(currents_a, '.', label='ia')
plot(voltages_b, '.', label='vb')
plot(currents_b, '.', label='ib')
plot(target, '.', label='dac')
xlabel('time (samples)')
ylabel('amplitude (bits)')
sio.savemat("smu.mat", {"v": voltages_a, "i": currents_a, "setpoint": target})
legend(loc='best')
figure()
semilogy(fftfreq(len(voltages_a), 2e-05), fft(voltages_a), '.')
semilogy(fftfreq(len(voltages_b), 2e-05), fft(voltages_b), '.')
semilogy(fftfreq(len(target), 2e-05), fft(target), '.')
savefig("svmi-fft.png")
show()
if u in layers_nx[-1]:
frontier.add(v)
edge_frontier.add(g.edge_id(u, v))
else:
layers_nx.append(frontier)
edges_nx.append(edge_frontier)
frontier = set([v])
edge_frontier = set([g.edge_id(u, v)])
# avoids empty successors
if len(frontier) > 0 and len(edge_frontier) > 0:
layers_nx.append(frontier)
edges_nx.append(edge_frontier)
return layers_nx, edges_nx
g = dgl.DGLGraph()
a = sp.random(n, n, 3 / n, data_rvs=lambda n: np.ones(n))
g.from_scipy_sparse_matrix(a)
g_nx = g.to_networkx()
src = random.choice(range(n))
layers_nx, _ = _bfs_nx(g_nx, src)
layers_dgl = dgl.bfs_nodes_generator(g, src)
assert len(layers_dgl) == len(layers_nx)
assert all(toset(x) == y for x, y in zip(layers_dgl, layers_nx))
g_nx = nx.random_tree(n, seed=42)
g = dgl.DGLGraph()
g.from_networkx(g_nx)
src = 0
_, edges_nx = _bfs_nx(g_nx, src)
edges_dgl = dgl.bfs_edges_generator(g, src)
assert len(edges_dgl) == len(edges_nx)
assert all(toset(x) == y for x, y in zip(edges_dgl, edges_nx))
def main():
# load data
mat = scipy.io.loadmat('../data/COIL20.mat')
X = mat['X'] # data
X = X.astype(float)
y = mat['Y'] # label
y = y[:, 0]
n_samples, n_features = X.shape # number of samples and number of features
# split data into 10 folds
ss = cross_validation.KFold(n_samples, n_folds=10, shuffle=True)
# perform evaluation on classification task
num_fea = 100 # number of selected features
clf = svm.LinearSVC() # linear SVM
correct = 0
for train, test in ss:
# obtain the score of each feature on the training set