Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def Z_nearPerCube(path, cube, CFIE, cubeNumber, w, eps_r, mu_r, ELEM_TYPE, Z_TMP_ELEM_TYPE, TDS_APPROX, Z_s, MOM_FULL_PRECISION):
"""this function computes the part of the MoM Z matrix corresponding to
the cube 'cubeNumber' as the observer cube and all its neighbors cubes,
including itself, as the source cubes."""
# call of the C++ routine for computing the interaction matrix
Z_CFIE_near_local = Z_MoM_triangles_arraysFromCube(cube, CFIE, w, eps_r, mu_r, TDS_APPROX, Z_s, MOM_FULL_PRECISION)
# we create a 1-D array out of Z_CFIE_near_local
Z_CFIE_nearPerCube = array(Z_CFIE_near_local.astype(ELEM_TYPE).flat)
writeBlitzArrayToDisk(Z_CFIE_near_local.astype(Z_TMP_ELEM_TYPE), os.path.join(path, str(cubeNumber)))
return Z_CFIE_nearPerCube
def normalizedFitness(R):
return array((R - mean(R)) / sqrt(var(R))).flatten()
def __init__(self, matrix):
self.matrix = array(matrix, dtype=float)
def getAction(self):
""" activates the module with the last observation and stores the result as last action. """
# get greedy action
action = LearningAgent.getAction(self)
# explore by chance
if random.random() < self.epsilon:
action = array([random.randint(self.module.numActions)])
# reduce epsilon
self.epsilon *= self.epsilondecay
return action
cdf_dict = { "Second stop" : stop_num_split[(1,)],
"Middle stop" : halfway_split[(50,)]+halfway_split[(51,)],
"Next to last stop" : end_num_split[(1,)] }
compare_ecdfs("Stop Position",cdf_dict);
# Plot E vs stop number
Es = []
moes = []
sns = array([k[0] for k in stop_num_split.keys()])
sns.sort()
for sn in sns:
rowdata = array([(r['lateness'],r['trip_stop_weight']) for r in stop_num_split[(sn,)]])
Eval,moe = E(rowdata,weighted=True)
Es.append(Eval)
moes.append(moe)
Es = array(Es)
moes = array(moes)
figure()
plot(sns,Es,'k-',label="Estimated expectation")
plot(sns,Es+moes,'k--',label=None)
plot(sns,Es-moes,'k--',label=None)
#legend()
xlabel("Stop Number")
ylabel("Expected Latenes")
title("Expected Lateness vs Stop Number")
if nb is None:
nb = d + 1
if s2 is None:
A2 = self.A[0]
else:
A2 = s2.A[0]
As = [self.A[0]] * nb + [B] + [A2] * (2*d + 1 - nb)
ls, rs = self._get_tangent_lr(B, d, op1=op1, nb=nb, s2=s2)
g = [m.adot(ls[0], tm.eps_r_op_1s(rs[1], As[1], As[1], op1.dot(op2)))]
g += [m.adot(ls[n - 1], tm.eps_r_op_1s(rs[n], As[n], As[n], op2))
for n in range(2, 2*d + 2)]
g = sp.array(g)
c = g - exs1 * exs2
return c, g
def get_default_hyperparameters(self,x=None,y=None):
"""
Return default hyperpameters.
*Default:*: No hyperparameters; Returns an empty array.
"""
return {'covar':SP.array([])}
Input x (e.g. time).
y : [double]
Output y (e.g. expression).
shift : [double]
The shift of each replicate group.
replicate_indices : [int]
Indices of replicates for each x, rexpectively
format_data : {format}
Format of the data points. See Matplotlib for details.
"""
x = S.array(x).reshape(-1)
y = S.array(y).reshape(-1)
x_shift = x.copy()
if shift is not None and replicate_indices is not None:
assert len(shift)==len(S.unique(replicate_indices)), 'Need one shift per replicate to plot properly'
_format_data = format_data.copy()
_format_data['alpha'] = .2
PL.plot(x,y,**_format_data)
for i in S.unique(replicate_indices):
x_shift[replicate_indices==i] -= shift[i]
for i in xrange(len(x)):
PL.annotate("",xy=(x_shift[i],y[i]),
xytext=(x[i],y[i]),
def scroll_depth(self, step):
# step along the normal
p1 = array(self.pw.GetPoint1())
p2 = array(self.pw.GetPoint2())
origin = self.pw.GetOrigin()
normal = self.pw.GetNormal()
newPlane = vtk.vtkPlane()
newPlane.SetNormal(normal)
newPlane.SetOrigin(origin)
newPlane.Push(step)
newOrigin = newPlane.GetOrigin()
delta = array(newOrigin) - array(origin)
p1 += delta
p2 += delta
self.pw.SetPoint1(p1)
self.pw.SetPoint2(p2)
self.pw.SetOrigin(newOrigin)
self.pw.UpdatePlacement()
self.update_plane()