Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def preprocess_img(img):
img = im.imresize(img,(480,576,),interp='nearest')
#print target.shape
img = img / 255. - 0.5
if img.mean() < 0:
img = -img
img = img.transpose(2,0,1)
img = np.expand_dims(img,0)
return img.astype('float32')
label = suffix.split("/")[0]
d[label].append(file_path)
tags = sorted(d.keys())
# print("classes : {}".format(tags))
processed_image_count = 0
useful_image_count = 0
X = []
y = []
for class_index, class_name in enumerate(tags):
filenames = d[class_name]
for filename in filenames:
processed_image_count += 1
img = scipy.misc.imread(filename)
height, width, chan = img.shape
assert chan == 3
X.append(img)
y.append(class_index)
useful_image_count += 1
# print("processed {}, used {}".format(processed_image_count,useful_image_count))
X = np.array(X).astype(np.float32)
y = np.array(y)
return X, y, tags
# now that we have the embeddings, interpolate between them
alpha = np.linspace(0,1, num=5)
latent_vectors = []
x1 = c_embedding
x2 = d_embedding
for a in alpha:
vector = x1*(1-a) + x2*a
latent_vectors.append(vector)
latent_vectors = np.asarray(latent_vectors)
cc = 0
for e in latent_vectors:
e = np.random.normal(-1.5e-6, 7e-6, size=[1,1,1,512]).astype(np.float32)
int_img = np.squeeze(sess.run(gen_image2, feed_dict={embedding_p:e, image_u:batch_cimages}))
misc.imsave('./'+str(cc)+'.png', int_img)
cc+=1
exit()
os.rename(rotation_filenames[0][0], outfile)
else:
if verbose:
print('Stitching images together..')
# read first image to calculate shape of stitched image
first_actual_file = None
for rowidx in range(nrow):
for colidx in range(ncol):
if rotation_filenames[rowidx][colidx] is not None:
first_actual_file = rotation_filenames[rowidx][colidx]
break
if first_actual_file is None:
raise ValueError('No images were created... check your rotation argument')
mypngimg = scipy.misc.imread(first_actual_file)
img_shape = mypngimg.shape
array_shape = (mypngimg.shape[0]*nrow, mypngimg.shape[1]*ncol, mypngimg.shape[-1])
mypngarray = np.zeros(array_shape).astype('uint8')
# read each individual image and place it in the larger stitch
for rowidx in range(nrow):
for colidx in range(ncol):
ij_filename = rotation_filenames[rowidx][colidx]
if ij_filename is not None:
mypngimg = scipy.misc.imread(ij_filename)
else:
mypngimg = np.zeros(img_shape) + int(255*bg_grayscale)
row_start = rowidx*img_shape[0]
row_end = (rowidx+1)*img_shape[0]
col_start = colidx*img_shape[1]
def visdir2(imdir,GT,maskdir,visdir):
sdmkdir(visdir)
imlist=[]
imnamelist=[]
for root,_,fnames in sorted(os.walk(maskdir)):
for fname in fnames:
if fname.endswith('.png'):
pathA = os.path.join(imdir,fname)
pathGT = os.path.join(GT,fname)
pathmask = os.path.join(maskdir,fname)
imlist.append((pathA,pathGT,pathmask,fname))
imnamelist.append(fname)
for pathA,pathB,pathmask,fname in imlist:
A = misc.imread(pathA).astype(np.uint8)
GT = misc.imread(pathB)
mask = misc.imread(pathmask)
fpr, tpr, thresholds = metrics.roc_curve(GT.ravel(), mask.ravel(), pos_label=255)
auc = metrics.auc(fpr, tpr)
GTv = show_plainmask_on_image(A,GT)
#maskv = show_plainmask_on_image(A,mask)
maskv = show_heatmap_on_image(A,mask)
maskv = draw(maskv,auc)
misc.imsave(os.path.join(visdir,fname),np.hstack((A,maskv,GTv)))#np.append(np.append(A,GTv,axis=1),maskv,axis=1))
#misc.imsave(os.path.join(visdir,fname),A)#np.append(np.append(A,GTv,axis=1),maskv,axis=1))
def send_img(img, fname):
'''
Serve a numpy array as a jpeg image
# Args
img: Image (numpy array)
fname: Name of the sent file
'''
f = io.BytesIO()
scipy.misc.imsave(f, img, format='jpeg')
f.seek(0)
return send_file(f, attachment_filename=fname,
mimetype='image/jpeg')
"""
Creates an RGB image of the room.
:param room:
:param room_structure:
:return:
"""
resource_package = __name__
room = np.array(room)
if not room_structure is None:
# Change the ID of a player on a target
room[(room == 5) & (room_structure == 2)] = 6
# Load images, representing the corresponding situation
box_filename = pkg_resources.resource_filename(resource_package, '/'.join(('surface', 'box.png')))
box = misc.imread(box_filename)
box_on_target_filename = pkg_resources.resource_filename(resource_package,
'/'.join(('surface', 'box_on_target.png')))
box_on_target = misc.imread(box_on_target_filename)
box_target_filename = pkg_resources.resource_filename(resource_package, '/'.join(('surface', 'box_target.png')))
box_target = misc.imread(box_target_filename)
floor_filename = pkg_resources.resource_filename(resource_package, '/'.join(('surface', 'floor.png')))
floor = misc.imread(floor_filename)
player_filename = pkg_resources.resource_filename(resource_package, '/'.join(('surface', 'player.png')))
player = misc.imread(player_filename)
player_on_target_filename = pkg_resources.resource_filename(resource_package,
'/'.join(('surface', 'player_on_target.png')))
def image_summary(self, tag, images, step):
"""Log a list of images."""
img_summaries = []
for i, img in enumerate(images):
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
scipy.misc.toimage(img).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
self.writer.flush()
[tf.nn.softmax(self.logits)],
{self.keep_prob: 1.0, self.input_image: [frame]})
# Road
im_softmax_road = im_softmax[0][:, 0].reshape(self.input_shape[0], self.input_shape[1])
segmentation_road = (im_softmax_road > 0.5).reshape(self.input_shape[0], self.input_shape[1], 1)
road_mask = np.dot(segmentation_road, np.array([[128, 64, 128, 64]]))
road_mask = scipy.misc.toimage(road_mask, mode="RGBA")
#scipy.misc.imsave('road.png', road_mask)
street_im.paste(road_mask, box=None, mask=road_mask)
# Fence
im_softmax_fence = im_softmax[0][:, 1].reshape(self.input_shape[0], self.input_shape[1])
segmentation_fence = (im_softmax_fence > 0.5).reshape(self.input_shape[0], self.input_shape[1], 1)
fence_mask = np.dot(segmentation_fence, np.array([[190, 153, 153, 64]]))
fence_mask = scipy.misc.toimage(fence_mask, mode="RGBA")
#scipy.misc.imsave('fence.png', fence_mask)
street_im.paste(fence_mask, box=None, mask=fence_mask)
return segmentation_road, segmentation_fence, np.array(street_im)
def add_pos_block(self,pos,size,img,reward,ID,map_val,resize = True) :
# self.game[start_x:start_x+self.step_x-1,start_y:start_y+self.step_y-1,:] = board
self.game_map[pos[0]:pos[0]+size[0],pos[1]:pos[1]+size[1]] = map_val
if resize :
img = scipy.misc.imresize(img,(size[0]*self.step_h,size[1]*self.step_w))
self.game[pos[0]*self.step_h:(pos[0]+size[0])*self.step_h,pos[1]*self.step_w:(pos[1]+size[1])*self.step_w,:] = img
self.reward_map[pos[0]:pos[0]+size[0],pos[1]:pos[1]+size[1]] = reward
self.ids[pos[0]:pos[0]+size[0],pos[1]:pos[1]+size[1]] = ID
self.x_position[pos[0]:pos[0]+size[0],pos[1]:pos[1]+size[1]] = pos[0]
self.y_position[pos[0]:pos[0]+size[0],pos[1]:pos[1]+size[1]] = pos[1]