Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
Inner_Corr[k, l] = Fold_l_Mat['Fold_Corr'][0][0]
Inner_MAE_inv[k, l] = Fold_l_Mat['Fold_MAE_inv']
os.remove(Fold_l_Mat_Path)
Inner_Corr = np.nan_to_num(Inner_Corr)
Inner_Corr_Mean[i, :] = np.mean(Inner_Corr, axis=0)
Inner_MAE_inv_Mean[i, :] = np.mean(Inner_MAE_inv, axis=0)
Inner_Corr_CVMean = np.mean(Inner_Corr_Mean, axis=0)
Inner_MAE_inv_CVMean = np.mean(Inner_MAE_inv_Mean, axis=0)
Inner_Corr_CVMean = (Inner_Corr_CVMean - np.mean(Inner_Corr_CVMean)) / np.std(Inner_Corr_CVMean)
Inner_MAE_inv_CVMean = (Inner_MAE_inv_CVMean - np.mean(Inner_MAE_inv_CVMean)) / np.std(Inner_MAE_inv_CVMean)
Inner_Evaluation = Inner_Corr_CVMean + Inner_MAE_inv_CVMean
Inner_Evaluation_Mat = {'Inner_Corr':Inner_Corr, 'Inner_MAE_inv':Inner_MAE_inv, 'Inner_Corr_CVMean':Inner_Corr_CVMean, 'Inner_MAE_inv_CVMean':Inner_MAE_inv_CVMean, 'Inner_Evaluation':Inner_Evaluation}
sio.savemat(ResultantFolder + '/Inner_Evaluation.mat', Inner_Evaluation_Mat)
Optimal_Combination_Index = np.argmax(Inner_Evaluation)
Optimal_Alpha_Index = np.int64(np.ceil((Optimal_Combination_Index + 1) / len(L1_ratio_Range))) - 1
Optimal_Alpha = Alpha_Range[Optimal_Alpha_Index]
Optimal_L1_ratio_Index = np.mod(Optimal_Combination_Index, len(L1_ratio_Range))
Optimal_L1_ratio = L1_ratio_Range[Optimal_L1_ratio_Index]
return (Optimal_Alpha, Optimal_L1_ratio)
print('Testing...')
for j in range(len(completeSignal)): # Iterate over the signal
if completeSignal[j] == 1: # Candidate for subsampling
decimatedSignal = np.zeros(completeSignal.shape) # Only zeroes
decimatedSignal[j] = 1 # Except for the current signal
utils.saveLabelList(decimatedSignal, dirOutSamplesTe + idSignal + '_' + str(j) + '.txt')
sio.savemat(dirOutSamplesTe + idSignal + '_' + str(j) + '.mat', {'y':decimatedSignal})
labelsListTe.append(categoryId) # Add the category of the label (Warning: No categories skippables !!!)
categoryId += 1 # Next categories
# Save labels
utils.saveLabelList(labelsListTr, dirOutSamples + 'trlabels.txt')
utils.saveLabelList(labelsListTe, dirOutSamples + 'telabels.txt')
sio.savemat(dirOutSamples + 'trlabels.mat', {'labels':np.array(labelsListTr)})
sio.savemat(dirOutSamples + 'telabels.mat', {'labels':np.array(labelsListTe)})
dat = pl.imread(datf)
x,y,z = np.atleast_3d(dat).shape
if verbose:
print "Loaded %d x %d x %d image data from file %s"%(x,y,z,datf)
if norm and not pathexists(normf):
from scipy.io import savemat
print "Saving normalized data to file %s"%normf
dat = dat.reshape([x*y,z])
normv = np.apply_along_axis(np.linalg.norm,1,dat)
normv[normv==0] = 1.0
dat = (dat.T / normv.T).T
dat = dat.reshape([x,y,z])
savemat(normf,{'normed':dat})
print "Finished saving normalized data"
if flipdat:
dat = dat[::-1,:,:]
if reff is None:
ref = dat[:,:,refbands]
else:
rfile,rext = os.path.splitext(reff)
if rext == '.mat':
ref = load_matlab(reff,refkey)
if len(ref)==0:
return -1
else:
ref = pl.imread(reff)
loss_data = Loss_all[:count_loss]
scio.savemat('./models/loss/DeepDenseLossData'+str(ssim_weight)+'.mat',{'loss':loss_data})
loss_ssim_data = Loss_ssim[:count_loss]
scio.savemat('./models/loss/DeepDenseLossSSIMData'+str(ssim_weight)+'.mat', {'loss_ssim': loss_ssim_data})
loss_pixel_data = Loss_pixel[:count_loss]
scio.savemat('./models/loss/DeepDenseLossPixelData.mat'+str(ssim_weight)+'', {'loss_pixel': loss_pixel_data})
# IS_Validation = True;
if IS_Validation:
validation_ssim_data = Val_ssim_data[:count_loss]
scio.savemat('./models/val/Validation_ssim_Data.mat' + str(ssim_weight) + '', {'val_ssim': validation_ssim_data})
validation_pixel_data = Val_pixel_data[:count_loss]
scio.savemat('./models/val/Validation_pixel_Data.mat' + str(ssim_weight) + '', {'val_pixel': validation_pixel_data})
if debug:
elapsed_time = datetime.now() - start_time
print('Done training! Elapsed time: %s' % elapsed_time)
print('Model is saved to: %s' % save_path)
x, y = numpy.meshgrid(range(steps, m, steps), range(steps, n, steps))
xx, yy = x.flatten(), y.flatten()
tmpframe = os.path.join(temp_dir, 'out_tmp.frame')
frame = numpy.array([xx, yy, scale * numpy.ones(xx.shape[0]),
numpy.zeros(xx.shape[0])])
numpy.savetxt(tmpframe, frame.T, fmt='%03.3f')
cmd = ['sift', imname, '--output=' + resultname,
'--read-frames=' + tmpframe]
if force_orientation:
cmd += ['--orientations']
os.system(' '.join(cmd))
# Re-write as .mat file, which loads faster.
f = numpy.loadtxt(resultname)
sio.savemat(resultname + '.mat', {'f':f}, oned_as='row')
finally:
shutil.rmtree(temp_dir)
# training step
training()
# validation
ytest, yhat_test, test_labels = testing()
tmp_val_loss = get_error2(ytest, yhat_test, test_labels, num_classes)
print('\nMedErr: {0}'.format(tmp_val_loss))
writer.add_scalar('val_loss', tmp_val_loss, count)
val_loss.append(tmp_val_loss)
# time and output
toc = time.time() - tic
print('Epoch: {0} done in time {1}s'.format(epoch, toc))
# cleanup
gc.collect()
writer.close()
val_loss = np.stack(val_loss)
spio.savemat(plots_file, {'val_loss': val_loss})
fprintf('SPM path: %s\\n',which('spm'));
spm_defaults;
if strcmp(spm('ver'),'SPM8'), spm_jobman('initcfg');end\n
"""
if self.mfile:
if self.jobname in ['st','smooth','preproc','fmri_spec','fmri_est'] :
mscript += self._generate_job('jobs{1}.%s{1}.%s(1)' %
(self.jobtype,self.jobname), contents[0])
else:
mscript += self._generate_job('jobs{1}.%s{1}.%s{1}' %
(self.jobtype,self.jobname), contents[0])
else:
jobdef = {'jobs':[{self.jobtype:[{self.jobname:self.reformat_dict_for_savemat
(contents[0])}]}]}
savemat(os.path.join(cwd,'pyjobs_%s.mat'%self.jobname), jobdef)
mscript += "load pyjobs_%s;\n\n" % self.jobname
mscript += """
if strcmp(spm('ver'),'SPM8'),
jobs=spm_jobman('spm5tospm8',{jobs});
end
spm_jobman(\'run\',jobs);\n
"""
if postscript is not None:
mscript += postscript
cmdline = self._gen_matlab_command(mscript, cwd=cwd,
script_name='pyscript_%s' % self.jobname,
mfile=self.mfile)
return cmdline, mscript
x_outer = []
y_outer = []
while s
'''Write linearization data to MATLAB .mat file (with file name matFileName)'''
try:
data = {}
data['A'] = self.A
data['B'] = self.B
data['C'] = self.C
data['D'] = self.D
data['eigenValues']=self.eigenValues
data['eigenVectors']=self.eigenVectors
data['inputNames']=self.inputNames
data['outputNames']=self.outputNames
data['stateNames']=self.stateNames
if self.p != None:
for name, value in self.p.iteritems():
data[name]=value
scipy.io.savemat(file_name=matFileName,mdict=data,oned_as='row')
except Exception, info:
print 'Error in writeDataToMat()'
print info.message
pos_interpolated = pos.copy()
texture = cv2.remap(image, pos_interpolated[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0))
if args.isMask:
vertices_vis = get_visibility(vertices, prn.triangles, h, w)
uv_mask = get_uv_mask(vertices_vis, prn.triangles, prn.uv_coords, h, w, prn.resolution_op)
uv_mask = resize(uv_mask, (args.texture_size, args.texture_size), preserve_range = True)
texture = texture*uv_mask[:,:,np.newaxis]
write_obj_with_texture(os.path.join(save_folder, name + '.obj'), save_vertices, prn.triangles, texture, prn.uv_coords/prn.resolution_op)#save 3d face with texture(can open with meshlab)
else:
write_obj_with_colors(os.path.join(save_folder, name + '.obj'), save_vertices, prn.triangles, colors) #save 3d face(can open with meshlab)
if args.isDepth:
depth_image = get_depth_image(vertices, prn.triangles, h, w, True)
depth = get_depth_image(vertices, prn.triangles, h, w)
imsave(os.path.join(save_folder, name + '_depth.jpg'), depth_image)
sio.savemat(os.path.join(save_folder, name + '_depth.mat'), {'depth':depth})
if args.isMat:
sio.savemat(os.path.join(save_folder, name + '_mesh.mat'), {'vertices': vertices, 'colors': colors, 'triangles': prn.triangles})
if args.isKpt or args.isShow:
# get landmarks
kpt = prn.get_landmarks(pos)
np.savetxt(os.path.join(save_folder, name + '_kpt.txt'), kpt)
if args.isPose or args.isShow:
# estimate pose
camera_matrix, pose = estimate_pose(vertices)
np.savetxt(os.path.join(save_folder, name + '_pose.txt'), pose)
np.savetxt(os.path.join(save_folder, name + '_camera_matrix.txt'), camera_matrix)
np.savetxt(os.path.join(save_folder, name + '_pose.txt'), pose)