Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def one_melody_matrix(track_id):
tchr, chroma, t, melody = aligned_pitch_features(track_id)
melody = np.round(melody)
pitched = melody > 0
pitchclass = np.remainder(melody - 69, 12)
framerate = 1.0/(t[1]-t[0])
nmel = len(melody)
vals = np.ones(nmel)[pitched]
vals *= 1.0 / framerate
rows = np.arange(nmel)[pitched]
cols = pitchclass[pitched]
melmat = csr_matrix((vals, (rows, cols)), shape=(nmel, 12))
return t, melmat.todense()
overlap = -1 (for all gt rois), which means they will be excluded from
training.
"""
for ix, entry in enumerate(roidb):
overlaps = entry['gt_overlaps'].toarray()
crowd_inds = np.where(overlaps.max(axis=1) == -1)[0]
non_gt_inds = np.where(entry['gt_classes'] == 0)[0]
if len(crowd_inds) == 0 or len(non_gt_inds) == 0:
continue
iscrowd = [int(True) for _ in xrange(len(crowd_inds))]
crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :])
non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :])
ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd)
bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0]
overlaps[non_gt_inds[bad_inds], :] = -1
roidb[ix]['gt_overlaps'] = scipy.sparse.csr_matrix(overlaps)
return roidb
Pg = gen[:, PG] / baseMVA
Qg = gen[:, QG] / baseMVA
Pmin = gen[:, PMIN] / baseMVA
Pmax = gen[:, PMAX] / baseMVA
Qmin = gen[:, QMIN] / baseMVA
Qmax = gen[:, QMAX] / baseMVA
if dc: ## DC model
## more problem dimensions
nv = 0 ## number of voltage magnitude vars
nq = 0 ## number of Qg vars
q1 = array([]) ## index of 1st Qg column in Ay
## power mismatch constraints
B, Bf, Pbusinj, Pfinj = makeBdc(baseMVA, bus, branch)
neg_Cg = sparse((-ones(ng), (gen[:, GEN_BUS], arange(ng))), (nb, ng)) ## Pbus w.r.t. Pg
Amis = hstack([B, neg_Cg], 'csr')
bmis = -(bus[:, PD] + bus[:, GS]) / baseMVA - Pbusinj
## branch flow constraints
il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
nl2 = len(il) ## number of constrained lines
lpf = -Inf * ones(nl2)
upf = branch[il, RATE_A] / baseMVA - Pfinj[il]
upt = branch[il, RATE_A] / baseMVA + Pfinj[il]
user_vars = ['Va', 'Pg']
ycon_vars = ['Pg', 'y']
else: ## AC model
## more problem dimensions
nv = nb ## number of voltage magnitude vars
nq = ng ## number of Qg vars
x1 = float(bbox.find('xmin').text) - 1
y1 = float(bbox.find('ymin').text) - 1
x2 = float(bbox.find('xmax').text) - 1
y2 = float(bbox.find('ymax').text) - 1
diffc = obj.find('difficult')
difficult = 0 if diffc == None else int(diffc.text)
ishards[ix] = difficult
cls = self._class_to_ind[obj.find('name').text.lower().strip()]
boxes[ix, :] = [x1, y1, x2, y2]
gt_classes[ix] = cls
overlaps[ix, cls] = 1.0
seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1)
overlaps = scipy.sparse.csr_matrix(overlaps)
return {'boxes': boxes,
'gt_classes': gt_classes,
'gt_ishard': ishards,
'gt_overlaps': overlaps,
'flipped': False,
'seg_areas': seg_areas}
def projDirichlet(n, bc):
bc = checkBC(bc)
ij = ([0, n], [0, 1])
vals = [0, 0]
if(bc[0] == 'dirichlet'):
vals[0] = -1
if(bc[1] == 'dirichlet'):
vals[1] = 1
return sp.csr_matrix((vals, ij), shape=(n+1, 2))
# Load object bounding boxes into a data frame.
for ix, obj in enumerate(objs):
bbox = obj.find('bndbox')
# Make pixel indexes 0-based
x1 = float(bbox.find('xmin').text) - 1
y1 = float(bbox.find('ymin').text) - 1
x2 = float(bbox.find('xmax').text) - 1
y2 = float(bbox.find('ymax').text) - 1
cls = self._class_to_ind[obj.find('name').text.lower().strip()]
boxes[ix, :] = [x1, y1, x2, y2]
gt_classes[ix] = cls
overlaps[ix, cls] = 1.0
seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1)
overlaps = scipy.sparse.csr_matrix(overlaps)
return {'boxes' : boxes,
'gt_classes': gt_classes,
'gt_overlaps' : overlaps,
'flipped' : False,
'seg_areas' : seg_areas}
gt_roidb = self.gt_roidb()
ss_roidb = self._load_selective_search_roidb(gt_roidb)
#add ground truth ROIs
if self._boAddGroundTruthRois:
roidb = self.merge_roidbs(gt_roidb, ss_roidb)
else:
roidb = ss_roidb
#Keep max of e.g. 2000 rois
if self._maxNrRois and self._maxNrRois > 0:
print ("Only keeping the first %d ROIs.." % self._maxNrRois)
for i in range(self.num_images):
gt_overlaps = roidb[i]['gt_overlaps']
gt_overlaps = gt_overlaps.todense()[:self._maxNrRois]
gt_overlaps = scipy.sparse.csr_matrix(gt_overlaps)
roidb[i]['gt_overlaps'] = gt_overlaps
roidb[i]['boxes'] = roidb[i]['boxes'][:self._maxNrRois,:]
roidb[i]['gt_classes'] = roidb[i]['gt_classes'][:self._maxNrRois]
with open(cache_file, 'wb') as fid:
cp.dump(roidb, fid, cp.HIGHEST_PROTOCOL)
print ('wrote ss roidb to {}'.format(cache_file))
return roidb
if nnz == 0:
self.synth_data = sp.sparse.csr_matrix(shape, dtype=self.data.data.dtype).tolil()
else:
data = self.data.data.data
indices = self.data.data.indices
indptr = self.data.data.indptr
last_indptr_idx = indptr[len(indptr) - 1]
indptr_wo_last = indptr[:-1]
new_indptrs = []
for i in range(0, self.nsamples - 1):
new_indptrs.append(indptr_wo_last + (i * last_indptr_idx))
new_indptrs.append(indptr + ((self.nsamples - 1) * last_indptr_idx))
new_indptr = np.concatenate(new_indptrs)
new_data = np.tile(data, self.nsamples)
new_indices = np.tile(indices, self.nsamples)
self.synth_data = sp.sparse.csr_matrix((new_data, new_indices, new_indptr), shape=shape).tolil()
else:
self.synth_data = np.tile(self.data.data, (self.nsamples, 1))
self.maskMatrix = np.zeros((self.nsamples, self.M))
self.kernelWeights = np.zeros(self.nsamples)
self.y = np.zeros((self.nsamples * self.N, self.D))
self.ey = np.zeros((self.nsamples, self.D))
self.lastMask = np.zeros(self.nsamples)
self.nsamplesAdded = 0
self.nsamplesRun = 0
if self.keep_index:
self.synth_data_index = np.tile(self.data.index_value, self.nsamples)
def skills_corr_counter_win(ds, sparse_matrix_input, window=None):
#If window not specified not use window
student_cfa = ds[['student_id', 'correct_first_attempt']]
sparse_matrix = csr_matrix(sparse_matrix_input.shape)
for col in xrange(sparse_matrix_input.shape[1]):
skill_indices = np.array(sparse_matrix_input[:,col].nonzero()[0])
s_cfa = student_cfa.ix[skill_indices]
grouped = s_cfa.groupby('student_id')
if window:
sg = grouped.apply(cumsum_window, window)
sg = sg.reset_index(level=0).drop('student_id',axis=1)
if sg.shape[0]==1:
sg = sg.transpose()
else:
sg = grouped.cumsum()
`data_list` needs to be formatted as the first result of
:func:`~pypet.parameter.SparseParameter._serialize_matrix`
"""
matrix_format = data_list[0]
if matrix_format == 'csc':
if data_list[1] == '__empty__':
return spsp.csc_matrix(data_list[4])
else:
return spsp.csc_matrix(tuple(data_list[1:4]), shape=data_list[4])
elif matrix_format == 'csr':
if data_list[1] == '__empty__':
return spsp.csr_matrix(data_list[4])
else:
return spsp.csr_matrix(tuple(data_list[1:4]), shape=data_list[4])
elif matrix_format == 'bsr':
if data_list[1] == '__empty__':
# We have an empty matrix, that cannot be build as in esle case
return spsp.bsr_matrix(data_list[4])
else:
return spsp.bsr_matrix(tuple(data_list[1:4]), shape=data_list[4])
elif matrix_format == 'dia':
if data_list[1] == '__empty__':
# We have an empty matrix, that cannot be build as in esle case
return spsp.dia_matrix(data_list[3])
else:
return spsp.dia_matrix(tuple(data_list[1:3]), shape=data_list[3])
else:
raise RuntimeError('You shall not pass!')