How to use the scipy.zeros function in scipy

To help you get started, we’ve selected a few scipy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github loli / medpy / bin / others / testbed_tamura.py View on Github external
[9,1,2,3]],
         [[4,5,6,7],
          [8,9,1,2],
          [3,4,5,6]]]
    
    a = scipy.asarray(a)
    b = scipy.asarray(b)
    c = scipy.asarray(c)
    
    original_image_n = '/home/omaier/Experiments/Regionsegmentation/Evaluation_Viscous/00originalvolumes/o09.nii'
    original_image = load(original_image_n)
    original_image_d = scipy.squeeze(original_image.get_data())
    
    original_image_d = original_image_d[0:50, 0:50, 0:50]
    
    dir = scipy.zeros(original_image_d.shape).ravel()
    oir = original_image_d.ravel()
    for i in range(len(dir)):
        dir[i] = oir[i]
    dir = dir.reshape(original_image_d.shape)
    
    coa, con, dir = tamura(dir, 5)
    
    for i in range(5):
        print "k=", i+1, " with ", len((coa == i).nonzero()[0])
github pybrain / pybrain / pybrain / rl / learners / search / incrementalcomplexity / precisionboundparameters.py View on Github external
def _applyWeights(self):
        tmp = zeros(self.module.paramdim)
        # scale it to the range [-range, range]
        largest = 2**self.maxComplexity
        for w in range(self.module.paramdim):
            tmp[w] = self.weightRange - (2.*self.binaryWeights[w]*self.weightRange)/largest
        self.module._setParameters(tmp)
github pybrain / pybrain / arac / src / python / arac / pybrainbridge.py View on Github external
def _mdlstm_handler(self, layer):
        # See if there already is a proxy:
        try: 
            proxy = self.map[layer]
        except KeyError:
            proxy = cppbridge.MdlstmLayer(layer.dimensions, layer.dim)
            self[layer] = proxy
        proxy.init_input(layer.inputbuffer)
        proxy.init_output(layer.outputbuffer)
        proxy.init_inerror(layer.inputerror)
        proxy.init_outerror(layer.outputerror)
        
        # FIXME: we have to make a buffer especially for this layer to give to 
        # arac. We attach this to the original pybrain layer object.
        layer.inputx = scipy.zeros((layer.dimensions, layer.dim))
        proxy.init_input_squashed(layer.inputx)
        proxy.init_input_gate_squashed(layer.ingate);
        proxy.init_input_gate_unsquashed(layer.ingatex);
        proxy.init_output_gate_squashed(layer.outgate);
        proxy.init_output_gate_unsquashed(layer.outgatex);
        proxy.init_forget_gate_unsquashed(layer.forgetgatex);
        proxy.init_forget_gate_squashed(layer.forgetgate);
        
        return proxy
github PMBio / mtSet / mtSet / pycore / covariance / linear.py View on Github external
def Kgrad_x(self,theta,X,n=None,d=None):
        """
        evaluates the gradient 
        """
        assert X.shape[1]==self.n_dimensions, 'dimensions do not match'
        
        A = SP.exp(2*theta[0])
        if n!=None:
            # gradient with respect to X[n,d]
            XX = SP.zeros((X.shape[0],X.shape[0]))
            XX[:,n] = X[:,d]
            XX[n,:] = X[:,d]
            XX[n,n] *= 2
        else:
            # gradient with respect to X[:,d], but assuming K = XY^T (not symmetric!)
            Xd = SP.reshape(X[:,d],(X.shape[0],1))
            XX = SP.tile(Xd,X.shape[0])
        return A*(XX)
github shunsukeaihara / pyssp / pyssp / tools / vad_with_hmm.py View on Github external
def read(fname,winsize):
    if fname =="-":
        wf=wave.open(sys.stdin,'rb')
        n=wf.getnframes()
        str=wf.readframes(n)
        params = ((wf.getnchannels(), wf.getsampwidth(),
                   wf.getframerate(), wf.getnframes(),
                   wf.getcomptype(), wf.getcompname()))
        siglen=((int )(len(str)/2/winsize) + 1) * winsize
        signal=sp.zeros(siglen, sp.int16)
        signal[0:len(str)/2] = sp.fromstring(str,sp.int16)
        return signal,params
    else:
        return read_signal(fname,winsize)
github ratschlab / spladder / spladder / classes / counts.py View on Github external
def __init__(self, seg_num):
        self.segments = sp.zeros((seg_num,), dtype='float') 
        self.seg_pos = sp.zeros((seg_num,), dtype='float')
        self.edges = sp.zeros((0, 2), dtype='float')
github hadsed / AdiaQC / problems / hopfield_var_gamma.py View on Github external
isingConvert = 0
    isingSigns = {'hx': -1, 'hz': -1, 'hzz': -1}

    # Scaling matrices for Ising coefficients (can be list, similar to multiT)
    gbeg = 0.0
    gend = 1.0
    gstp = 0.5
    hzscale = sp.arange(0.0, 10.0, 0.1)
    hzzscale = None
    hxscale = None

    # This is gamma, the appropriate weighting on the input vector
    # isingSigns['hz'] *= float(cmdargs['garg'])

    alpha = sp.array(hparams['inputState'])
    beta = sp.zeros((neurons,neurons))
    delta = sp.array([])

    # Construct the memory matrix according to a learning rule
    if hparams['learningRule'] == 'hebb':
        # Construct pattern matrix according to Hebb's rule
        for i in range(neurons):
            for j in range(neurons):
                for p in range(len(memories)):
                    beta[i,j] += ( memories[p][i]*memories[p][j] -
                                   len(memories)*(i == j) )
        beta = sp.triu(beta)/float(neurons)
    elif hparams['learningRule'] == 'stork':
        # Construct the memory matrix according to the Storkey learning rule
        memMat = sp.zeros((neurons,neurons))
        for m, mem in enumerate(memories):
            for i in range(neurons):
github GeoscienceAustralia / anuga_core / anuga / utilities / quantity_setting_functions.py View on Github external
nearest point, in which case the background value is used
        """

        import scipy
        import scipy.interpolate
        import scipy.spatial
        import numpy as np

        x = np.asarray(x).reshape(1, -1)[0,:]
        y = np.asarray(y).reshape(1, -1)[0,:]

        # Since ANUGA stores x,y internally in non-georeferenced coordinates,
        # we adjust them here
        xll = domain.geo_reference.xllcorner
        yll = domain.geo_reference.yllcorner
        z = scipy.zeros(shape=(len(x), 2))
        z[:,0] = x+xll
        z[:,1] = y+yll

        # This will hold the quantity values
        quantity_output = x*0. + background_value
        # Compute the index of the nearest-neighbour in quantity_xyValue
        neighbour_data = quantity_xy_interpolator.query(z,
            k=k_nearest_neighbours)

        # Next find indices with distance < threshold_distance
        if(k_nearest_neighbours==1):
            dist_lt_thresh = neighbour_data[0] < threshold_distance
        else:
            dist_lt_thresh = neighbour_data[0][:,0] < threshold_distance

        dist_lt_thresh = dist_lt_thresh.nonzero()[0]
github PMEAL / OpenPNM / OpenPNM / Algorithms / __GenericLinearTransport__.py View on Github external
source_mode = 'nonlinear'
                        elif maxiter == 0:
                            source_mode = 'linear'
                    # Check value of tol
                    if tol is None:
                        tol = 1e-5
                    else:
                        try:
                            tol = float(tol)
                        except (ValueError, TypeError):
                            raise Exception('input for tol cannot be ' +
                                            'converted to float!')

                    if ('pore.source_' + prop not in self.labels() or
                            mode == 'overwrite'):
                        self['pore.source_' + prop] = sp.zeros((self.Np,),
                                                               dtype=bool)
                        temp_arr = sp.ones((self.Np,), dtype=float) * sp.nan
                        self['pore.source_' + source_mode +
                             '_s1_' + prop] = temp_arr
                        self['pore.source_' + source_mode +
                             '_s2_' + prop] = temp_arr

                    # Setting the source term for all the modes except 'remove'
                    matching_physics = [phys for phys in self._phase._physics
                                        if source_name in phys.models.keys()]
                    for phys in matching_physics:
                        x = phys.models[source_name]['x']
                        return_rate = phys.models[source_name]['return_rate']
                        regen_mode = phys.models[source_name]['regen_mode']
                        phys.models[source_name]['x'] = x0
                        phys.models[source_name]['return_rate'] = False
github Gjacquenot / Puma-EM / code / V_EH.py View on Github external
def V_EH_dipole(J_dip, r_dip, list_of_edges_numbers, RWGNumber_CFIE_OK, RWGNumber_signedTriangles, RWGNumber_edgeVertexes, RWGNumber_oppVertexes, vertexes_coord, w, eps_r, mu_r):
    """I don't know yet what's gonna go here.
    Anyway, we use prefentially 2-D triangles arrays in the C++ code"""
    # creation of the local V arrays 
    E = list_of_edges_numbers.shape[0]
    V_EH = zeros((E, 4), 'D')
    V_FULL_PRECISION = 1
    # RWGNumber_vertexesCoord
    RWGNumber_vertexesCoord = zeros((E, 6), 'd')
    RWGNumber_vertexesCoord[:, 0:3] = take(vertexes_coord, RWGNumber_edgeVertexes[:,0], axis=0).astype('d')
    RWGNumber_vertexesCoord[:, 3:6] = take(vertexes_coord, RWGNumber_edgeVertexes[:,1], axis=0).astype('d')
    # RWGNumber_oppVertexesCoord
    RWGNumber_oppVertexesCoord = zeros((E, 6), 'd')
    RWGNumber_oppVertexesCoord[:, 0:3] = take(vertexes_coord, RWGNumber_oppVertexes[:,0], axis=0).astype('d')
    RWGNumber_oppVertexesCoord[:, 3:6] = take(vertexes_coord, RWGNumber_oppVertexes[:,1], axis=0).astype('d')
    wrapping_code = """
    std::vector > V_tE_J, V_tH_J, V_nE_J, V_nH_J;
    V_tE_J.resize(E);
    V_tH_J.resize(E);
    V_nE_J.resize(E);
    V_nH_J.resize(E);
    double rDip[3];