How to use the scipy.stats.norm function in scipy

To help you get started, we’ve selected a few scipy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github ICB-DCM / pyABC / test_nondeterministic / test_abc_smc_algorithm.py View on Github external
def model(args):
        return {"y": st.norm(args['x'], sigma).rvs()}
github ColCarroll / minimc / test / test_distributions.py View on Github external
def test_neg_log_normal():
    neg_log_p = neg_log_normal(2, 0.1)
    true_rv = st.norm(2, 0.1)
    for x in np.random.randn(10):
        assert_almost_equal(neg_log_p(x), -true_rv.logpdf(x))
github Pyomo / pyomo / pyomo / pysp / daps / distr2pysp.py View on Github external
def d2norm(filespec):
        """ Local routine to read data and produce the norm loc and size dict.
        """
        x = np.loadtxt(filespec)
        loc, scale = sp.norm.fit(x)
        dictout = {'loc':loc, 'scale':scale}
        return 'norm', dictout
github statsmodels / statsmodels / statsmodels / stats / _diagnostic_other.py View on Github external
endog = results.model.endog
    nobs = endog.shape[0]   #TODO: use attribute, may need to be added
    fitted = results.predict()
    #fitted = results.fittedvalues  # discrete has linear prediction
    #this assumes Poisson
    resid2 = results.resid_response**2
    var_resid_endog = (resid2 - endog)
    var_resid_fitted = (resid2 - fitted)
    std1 = np.sqrt(2 * (fitted**2).sum())

    var_resid_endog_sum = var_resid_endog.sum()
    dean_a = var_resid_fitted.sum() / std1
    dean_b = var_resid_endog_sum / std1
    dean_c = (var_resid_endog / fitted).sum() / np.sqrt(2 * nobs)

    pval_dean_a = stats.norm.sf(np.abs(dean_a))
    pval_dean_b = stats.norm.sf(np.abs(dean_b))
    pval_dean_c = stats.norm.sf(np.abs(dean_c))

    results_all = [[dean_a, pval_dean_a],
                   [dean_b, pval_dean_b],
                   [dean_c, pval_dean_c]]
    description = [['Dean A', 'mu (1 + a mu)'],
                   ['Dean B', 'mu (1 + a mu)'],
                   ['Dean C', 'mu (1 + a)']]

    # Cameron Trived auxiliary regression page 78 count book 1989
    endog_v = var_resid_endog / fitted
    res_ols_nb2 = OLS(endog_v, fitted).fit(use_t=False)
    stat_ols_nb2 = res_ols_nb2.tvalues[0]
    pval_ols_nb2 = res_ols_nb2.pvalues[0]
    results_all.append([stat_ols_nb2, pval_ols_nb2])
github bbfamily / abu / python / c3.py View on Github external
stock_mean = stock_day_change[0].mean()
    # 标准差
    stock_std = stock_day_change[0].std()
    print('股票0 mean均值期望:{:.3f}'.format(stock_mean))
    print('股票0 std振幅标准差:{:.3f}'.format(stock_std))

    # 绘制股票0的直方图
    plt.hist(stock_day_change[0], bins=50, normed=True)

    # linspace从股票0 最小值-> 最大值生成数据
    fit_linspace = np.linspace(stock_day_change[0].min(),
                               stock_day_change[0].max())

    # 概率密度函数(PDF,probability density function)
    # 由均值,方差,来描述曲线,使用scipy.stats.norm.pdf生成拟合曲线
    pdf = scs.norm(stock_mean, stock_std).pdf(fit_linspace)
    print(pdf)
    # plot x, y
    plt.plot(fit_linspace, pdf, lw=2, c='r')
    plt.show()
github selective-inference / Python-software / examples / knockoffs / knockoff_kernel.py View on Github external
fit_probability=logit_fit,
                                success_params=success_params,
                                alpha=alpha,
                                B=1000)[0]

        pvalues.append(pvalue)
        pivots.append(pivot)
        covered.append((interval[0] < true_target[0]) * (interval[1] > true_target[0]))
        print(interval, 'interval')
        lengths.append(interval[1] - interval[0])
        lower.append(interval[0])
        upper.append(interval[1])

        target_sd = np.sqrt(dispersion * XTXi[idx, idx])
        observed_target = np.squeeze(XTXi[idx].dot(X.T.dot(y)))
        quantile = ndist.ppf(1 - 0.5 * alpha)
        naive_interval = (observed_target - quantile * target_sd, observed_target + quantile * target_sd)

        naive_pivot = (1 - ndist.cdf((observed_target - true_target[0]) / target_sd))
        naive_pivot = 2 * min(naive_pivot, 1 - naive_pivot)
        naive_pivots.append(naive_pivot)

        naive_pvalue = (1 - ndist.cdf(observed_target / target_sd))
        naive_pvalue = 2 * min(naive_pivot, 1 - naive_pivot)
        naive_pvalues.append(naive_pvalue)

        naive_covered.append((naive_interval[0] < true_target[0]) * (naive_interval[1] > true_target[0]))
        naive_lengths.append(naive_interval[1] - naive_interval[0])

    if len(pvalues) > 0:
        return pd.DataFrame({'pivot':pivots,
                             'target':targets,
github achael / eht-imaging / maxen_utils.py View on Github external
qchisq = np.sum(np.abs(residq)**2)
    uchisq = np.sum(np.abs(residu)**2)
    pchisq = np.sum(np.abs(residp)**2)
    mchisq = np.sum(np.abs(residm)**2)
    
    print  "Q Chi^2/2N: %f" % (qchisq/(2*len(vis)))
    print  "U Chi^2/2N: %f" % (uchisq/(2*len(vis)))
    print  "P Chi^2/2N: %f" % (pchisq/(2*len(vis)))
    print  "m Chi^2/2N: %f" % (mchisq/(2*len(vis)))
    
    # plot the histograms
    plt.figure()
    plt.subplot(241)
    n,bins,patches = plt.hist(np.real(residq), normed=1, range=(-5,5), bins=50, color='b', alpha=0.5)
    n,bins,patches = plt.hist(np.imag(residq), normed=1, range=(-5,5), bins=50, color='r', alpha=0.5)
    y = scipy.stats.norm.pdf(bins)
    plt.plot(bins, y, 'b--', linewidth=3)
    plt.xlabel('Q Normalized Residual Re/Imag')
    plt.ylabel('p')
    
    plt.subplot(242)
    n,bins,patches = plt.hist(np.real(residu), normed=1, range=(-5,5), bins=50, color='b', alpha=0.5)
    n,bins,patches = plt.hist(np.imag(residu), normed=1, range=(-5,5), bins=50, color='r', alpha=0.5)
    y = scipy.stats.norm.pdf(bins)
    plt.plot(bins, y, 'b--', linewidth=3)
    plt.xlabel('U Normalized Residual Re/Imag')
    plt.ylabel('p')
    
    plt.subplot(243)
    n,bins,patches = plt.hist(np.real(residp), normed=1, range=(-5,5), bins=50, color='b', alpha=0.5)
    n,bins,patches = plt.hist(np.imag(residp), normed=1, range=(-5,5), bins=50, color='r', alpha=0.5)
    y = scipy.stats.norm.pdf(bins)
github jinserk / pytorch-asr / check.py View on Github external
ax.imshow(x_mean[k].squeeze())
        ax.set_title("reconstructed")
        plt.axis("off")

    figfile = save_figure(fig, args.image_dir, '03_reconstructions.png')
    #fig.savefig(figfile, dpi=300, facecolor=[0, 0, 0, 0])
    log.info(f"the figure of original and reconstructed image samples is stored to {figfile}")

    # display a 2D manifold of the digits
    n = 7  # figure with 15x15 digits
    digit_size = 28
    figure = np.zeros((digit_size * n, digit_size * n))
    # linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian
    # to produce values of the latent variables z, since the prior of the latent space is Gaussian
    grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
    grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
    null_image = Variable(torch.Tensor(np.zeros((1, 784))))

    fig = plt.figure(figsize=(12, 30))
    for y in range(10):
        plt.subplot(5, 2, y + 1)
        y_hot = np.zeros((1, 10))
        y_hot[0, y] = 1
        y_hot = Variable(torch.FloatTensor(y_hot))
        my = (ys == y)
        for i, z0i in enumerate(grid_x):
            for j, z1j in enumerate(grid_y[-1::-1]):
                z = np.array([[z0i, z1j]])
                if NUM_STYLE > 2:
                    z = zs2_mean[None, :] + zs2_std[None, :] * z
                    n = ((zs2[my] - z) ** 2).sum(1).argmin()
                    z = zs[my][n][None, :]
github idaholab / raven / framework / utils / mathUtils.py View on Github external
def normalCdf(x,mu=0.0,sigma=1.0):
  """
    Computation of normal cdf
    @ In, x, list or np.array, x values
    @ In, mu, float, optional, mean
    @ In, sigma, float, optional, sigma
    @ Out, cdfReturn, list or np.array, cdf
  """
  return stats.norm.cdf(x,mu,sigma)
github pints-team / pints / pints / toy / _annulus.py View on Github external
def __call__(self, x):
        if not len(x) == self._n_parameters:
            raise ValueError('x must be of same dimensions as density')
        return scipy.stats.norm.logpdf(
            np.linalg.norm(x), self._r0, self._sigma)