Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
import numpy as np
import logging
import tensorflow as tf
import sys
import fcn8_vgg
import utils
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
level=logging.INFO,
stream=sys.stdout)
from tensorflow.python.framework import ops
img1 = scp.misc.imread("./test_data/tabby_cat.png")
with tf.Session() as sess:
images = tf.placeholder("float")
feed_dict = {images: img1}
batch_images = tf.expand_dims(images, 0)
vgg_fcn = fcn8_vgg.FCN8VGG()
with tf.name_scope("content_vgg"):
vgg_fcn.build(batch_images, debug=True)
print('Finished building Network.')
logging.warning("Score weights are initialized random.")
logging.warning("Do not expect meaningful results.")
logging.info("Start Initializing Variabels.")
def test_lakes():
logging.info('running: test_lakes...')
# Load the image.
imgcolor = imread(PATH_IMG_LAKES)/255.0
img = rgb2gray(imgcolor)
# MorphACWE does not need g(I)
# Morphological ACWE. Initialization of the level-set.
macwe = morphsnakes.MorphACWE(img, smoothing=3, lambda1=1, lambda2=1)
macwe.levelset = circle_levelset(img.shape, (80, 170), 25)
# Visual evolution.
fig = plt.figure()
morphsnakes.evolve_visual(macwe, fig, num_iters=200, background=imgcolor)
The generator outputs the image and the gt_image.
"""
base_path = os.path.realpath(os.path.dirname(data_file))
files = [line.rstrip() for line in open(data_file)]
for epoche in itertools.count():
shuffle(files)
for file in files:
image_file, gt_image_file = file.split(" ")
image_file = os.path.join(base_path, image_file)
assert os.path.exists(image_file), \
"File does not exist: %s" % image_file
gt_image_file = os.path.join(base_path, gt_image_file)
assert os.path.exists(gt_image_file), \
"File does not exist: %s" % gt_image_file
image = scipy.misc.imread(image_file)
# Please update Scipy, if mode='RGB' is not avaible
gt_image = scp.misc.imread(gt_image_file, mode='RGB')
yield image, gt_image
# cv2.line(image,(x1,y1),(x2,y2),(0,0,255),2)
# cv2.imwrite('houghlines3.jpg',image)
# transverseSlice = imread("transverseSlice2767.png")
# for coords in validCenters:
# transverseSlice[coords[1] - 1: coords[1] + 2, int((coords[2] + 6) / 7) - 1: int((coords[2] + 6) / 7) + 2] = 1
root = '/home/pranathi/dsby7-CS/'
formatOfFiles = 'png'
listOfJpgs = [os.path.join(root, files) for files in os.listdir(root) if formatOfFiles in files]
listOfJpgs.sort()
count = 0
saggitalSlicearr = np.zeros((112, 864, 1725), dtype=np.uint8)
for index in range(0, len(listOfJpgs)):
for countSlice, value in enumerate(list(range(0, 1113, 10))):
image = imread(root + 'downSampledSlice%i.png' % index)
saggitalSlicearr[countSlice, :, index] = image[:, value]
for i in range(0, saggitalSlicearr.shape[0]):
imsave(root + "saggitalSlices/" + "saggitalSlice%i.jpg" % i, saggitalSlicearr[i])
maskArtVein = np.load('/home/pranathi/maskArtVein.npy')
root = '/home/pranathi/subsubVolumethresholdNew_28/'
formatOfFiles = 'npy'
listOfNpys = [os.path.join(root, files) for files in os.listdir(root) if formatOfFiles in files]
listOfNpys.sort()
transverseSlice = imread("transverseSlice2767.png")
for npyIndex in listOfNpys:
npyIndex = npyIndex.replace('.npy', '')
strs = npyIndex.split('/')[-1].split('_')
i, j, k = [int(s) for s in strs if s.isdigit()]
i = i - 160
if maskArtVein[(int((i + 9) / 10.0), int((j + 6) / 7.0), int((k + 6) / 7.0))] != 255:
def combine_images(location):
images_list = os.listdir(location)
count = 0
for image in images_list:
try:
base_name = "-".join(".".join(image.split(".")[0:-1]).split("-")[0:-1])
#print(image, location+base_name+"-A.png")
# img_A = Image.open(location+base_name+"-A.png")
# img_B = Image.open(location+base_name+"-B.png")
img_A = scipy.misc.imread(location+base_name+"-A.png", mode='RGB').astype(np.float)
img_B = scipy.misc.imread(location+base_name+"-B.png", mode='RGB').astype(np.float)
img_A = pad(img_A, (1024, 1024, 3))
img_B = pad(img_B, (1024, 1024, 3))
old_size = img_A.size
new_size = img_B.size
combined = np.hstack((np.array(new_A), np.array(new_B)))
scipy.misc.imsave(location+base_name+".png", combined)
count += 1
if(count % 100 == 0):
print(count, " out of ", len(images_list), " combined")
except:
continue
def get_images(num,max_digits,path):
depth_suffix = "_depth.png"
color_suffix = "_rgb.png"
reflec_suffix = "_rgb_r.png"
shade_suffix = "_rgb_s.png"
norm_suffix = "normal_ground_truth.png"
ground_truth_suffix = "depth_ground_truth.png"
prefix = str(num).zfill(max_digits)
img_d=misc.imread(path+prefix+depth_suffix)
img_c=misc.imread(path+prefix+color_suffix)
img_s=misc.imread(path+prefix+shade_suffix)
img_r=misc.imread(path+prefix+reflec_suffix)
img_n=misc.imread(path+prefix+norm_suffix)
img_gt=misc.imread(path+prefix+ground_truth_suffix)
return [img_d,img_c,img_s,img_r,img_n,img_gt]
segmentation = segmentation[:,:,0]
# read the gt
if is_training:
gt_filename = path.join(gt_folder, 'Glaucoma', image_filenames[i])
if path.exists(gt_filename):
gt_label = misc.imread(gt_filename)
else:
gt_filename = path.join(gt_folder, 'Non-Glaucoma', image_filenames[i])
if path.exists(gt_filename):
gt_label = misc.imread(gt_filename)
else:
raise ValueError('Unable to find {} in your training folder. Make sure that you have the folder organized as provided in our website.'.format(image_filenames[i]))
else:
gt_filename = path.join(gt_folder, image_filenames[i])
if path.exists(gt_filename):
gt_label = misc.imread(gt_filename)
else:
raise ValueError('Unable to find {} in your ground truth folder. If you are using training data, make sure to use the parameter is_training in True.'.format(image_filenames[i]))
# evaluate the results and assign to the corresponding row in the table
cup_dices[i], disc_dices[i], ae_cdrs[i] = evaluate_binary_segmentation(segmentation, gt_label)
# return the colums of the table
return image_filenames, cup_dices, disc_dices, ae_cdrs
def load_np_image_uint8(image_file):
"""Loads an image as a numpy array.
Args:
image_file: str. Image file.
Returns:
A 3-D numpy array of shape [image_size, image_size, 3] and dtype uint8,
with values in [0, 255].
"""
with tempfile.NamedTemporaryFile() as f:
f.write(tf.gfile.GFile(image_file, 'rb').read())
f.flush()
image = scipy.misc.imread(f.name)
# Workaround for black-and-white images
if image.ndim == 2:
image = np.tile(image[:, :, None], (1, 1, 3))
return image
def next_batch(self, batch_size):
images_batch = np.zeros((batch_size, self.fine_size, self.fine_size, 3))
labels_batch = np.zeros(batch_size)
for i in range(batch_size):
image = scipy.misc.imread(self.list_im[self._idx])
image = scipy.misc.imresize(image, (self.load_size, self.load_size))
image = image.astype(np.float32)/255.
image = image - self.data_mean
if self.randomize:
flip = np.random.random_integers(0, 1)
if flip>0:
image = image[:,::-1,:]
offset_h = np.random.random_integers(0, self.load_size-self.fine_size)
offset_w = np.random.random_integers(0, self.load_size-self.fine_size)
else:
offset_h = (self.load_size-self.fine_size)//2
offset_w = (self.load_size-self.fine_size)//2
images_batch[i, ...] = image[offset_h:offset_h+self.fine_size, offset_w:offset_w+self.fine_size, :]
labels_batch[i, ...] = self.list_lab[self._idx]
def load_image_array(image_file):
img = misc.imread(image_file)
# GRAYSCALE
if len(img.shape) == 2:
img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'float32')
img_new[:,:,0] = img
img_new[:,:,1] = img
img_new[:,:,2] = img
img = img_new
img_resized = misc.imresize(img, (224, 224))
return (img_resized/255.0).astype('float32')