Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def main():
image = cv2.imread("test_image1.png")
step_size_px = 10
vertex_row_count = image.shape[0] // step_size_px
vertex_col_count = image.shape[1] // step_size_px
vertex_count = vertex_row_count * vertex_col_count
face_row_count = vertex_row_count - 1
face_col_count = vertex_col_count - 1
print("Grid size: ", vertex_row_count, " x ", vertex_col_count)
print("Vertex count: ", vertex_count)
warp_coefficient_count = 2 * vertex_count
# G = np.zeros((2 * face_col_count * face_row_count, vertex_col_count * vertex_row_count), np.float32)
G = np.zeros(
(face_col_count * vertex_row_count + face_row_count * vertex_col_count, vertex_count),
np.float32)
ix_G_row = 0
for ix_dx_row in range(vertex_row_count):
for ix_dx_col in range(face_col_count):
col_index0 = vertex_col_count * ix_dx_row + ix_dx_col
col_index1 = col_index0 + 1
G[ix_G_row, col_index0] = -1.0
G[ix_G_row, col_index1] = 1.0
ix_G_row += 1
for ix_dy_row in range(face_row_count):
for ix_dy_col in range(vertex_col_count):
col_index0 = vertex_col_count * ix_dy_row + ix_dy_col
col_index1 = col_index0 + vertex_col_count
G[ix_G_row, col_index0] = -1.0
def split_bit_stream(self, width, bit_stream, high_bits):
# print bit_stream
# print high_bits
# Split bitstream into bytes
byte_width = width // 7
bit_pos = 0
filler_bit = "0"
byte_splits = np.zeros((byte_width), dtype=np.uint8)
for byte_index in range(byte_width):
remaining_bits = len(bit_stream) - bit_pos
bit_chunk = ""
if remaining_bits < 0:
bit_chunk = filler_bit * 7
else:
if remaining_bits < 7:
bit_chunk = bit_stream[bit_pos:]
bit_chunk += filler_bit * (7-remaining_bits)
else:
bit_chunk = bit_stream[bit_pos:bit_pos+7]
bit_chunk = bit_chunk[::-1]
def write_categ_lmdb(workfile, categories, LMDB_path, gray):
"""Given a workfile containing the AVI movies and the labels for each
frame, this function creates an LMDB for each classification category.
"""
# Open databases
categ_db = []
for idx, categ in enumerate(categories):
categ_db.append(
lmdb.open(os.path.join(LMDB_path, categ), map_size=int(1e12),
map_async=True, writemap=True, meminit=False))
curr_idx = np.zeros(len(categories), dtype='int')
with open(workfile, 'r') as f:
for line in f.readlines():
# Load work to do
avi_file, label_file = line.strip().split(' ')
# Convert to data
file_frames = avi_to_frame_list(avi_file, gray)
file_labels = label_file_to_labels(label_file)
# Quick check the lengths
assert len(file_frames) == len(file_labels), \
'Frames and Labels do not match in length!'
# Write data in each LMDB corresponding to the .avi category
db_label = avi_file.split("/")[-1].split("_")[0]
index = categories.index(db_label)
def _read_magnetic_moments(self, lines=None):
"""Read magnetic moments from OUTCAR.
Only reads the last occurrence. """
if not lines:
lines = self.load_file('OUTCAR')
magnetic_moments = np.zeros(len(self.atoms))
magstr = 'magnetization (x)'
# Search for the last occurrence
nidx = -1
for n, line in enumerate(lines):
if magstr in line:
nidx = n
# Read that occurrence
if nidx > -1:
for m in range(len(self.atoms)):
magnetic_moments[m] = float(lines[nidx + m + 4].split()[4])
return magnetic_moments[self.resort]
def strong_spot_mask(refl_tbl, img_size):
"""note only works for strong spot reflection tables
img_size is slow-scan, fast-scan"""
import numpy as np
from dials.algorithms.shoebox import MaskCode
Nrefl = len(refl_tbl)
masks = [refl_tbl[i]['shoebox'].mask.as_numpy_array()
for i in range(Nrefl)]
code = MaskCode.Foreground.real
x1, x2, y1, y2, z1, z2 = zip(*[refl_tbl[i]['shoebox'].bbox
for i in range(Nrefl)])
spot_mask = np.zeros(img_size, bool)
for i1, i2, j1, j2, M in zip(x1, x2, y1, y2, masks):
slcX = slice(i1, i2, 1)
slcY = slice(j1, j2, 1)
spot_mask[slcY, slcX] = M & code == code
return spot_mask
"""
# Obtaining the xyz and the nuclear charges from the compounds
xyzs = []
zs = []
max_n_atoms = 0
for compound in self.compounds:
xyzs.append(compound.coordinates)
zs.append(compound.nuclear_charges)
if len(compound.nuclear_charges) > max_n_atoms:
max_n_atoms = len(compound.nuclear_charges)
n_samples = len(xyzs)
# Padding the xyz and the nuclear charges
padded_xyz = np.zeros((n_samples, max_n_atoms, 3))
padded_zs = np.zeros((n_samples, max_n_atoms))
for i in range(n_samples):
current_n_atoms = xyzs[i].shape[0]
padded_xyz[i, :current_n_atoms, :] = xyzs[i]
padded_zs[i, :current_n_atoms] = zs[i]
return padded_xyz, padded_zs
def _noise_sample(self, cat_c, con_c, noise, bs):
idx = np.random.randint(10, size=bs)
c = np.zeros((bs, 10))
c[range(bs), idx] = 1.0
cat_c.data.copy_(torch.Tensor(c))
con_c.data.uniform_(-self.noise_uniform, self.noise_uniform)
noise.data.uniform_(-self.noise_uniform, self.noise_uniform)
z = torch.cat([noise, cat_c, con_c], 1).view(-1, (self.noise_dim+self.cat_dim+self.cont_dim))
return z, idx
def kernel(x1, x2, k_name='ARD', **kwargs):
is_not_diagnol = len(x1) != len(x2)
i_neq_j = np.ones((len(x2), 1))
K = np.zeros((len(x1), len(x2)))
for i in range(len(x1)):
xi = x1[i, :]
if not is_not_diagnol:
i_neq_j = np.asarray(i != np.arange(len(x2)), dtype=np.float).reshape(-1, 1)
K[i, :] = kernel_calc(xi, x2, k_name='ARD', lambd=kwargs['lambd'], beta=kwargs['beta'], i_neq_j=i_neq_j, sigma_sq=kwargs['sigma_sq'])
return K
def make_color_wheel():
"""
Generate color wheel according Middlebury color code
:return: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
self.step += 1
input_img = np.expand_dims(img_A, axis=0)
true_img = np.expand_dims(img_B, axis=0)
images_random = []
images_random.append(input_img)
images_random.append(true_img)
images_linear = []
images_linear.append(input_img)
images_linear.append(true_img)
for i in range(23):
z = np.random.normal(size=(1, self.Z_dim))
LR_desired_img = self.sess.run(self.LR_desired_img, feed_dict={self.image_A: input_img, self.z: z})
images_random.append(LR_desired_img)
z = np.zeros((1, self.Z_dim))
z[0][0] = (i / 23.0 - 0.5) * 2.0
LR_desired_img = self.sess.run(self.LR_desired_img, feed_dict={self.image_A: input_img, self.z: z})
images_linear.append(LR_desired_img)
image_rows = []
for i in range(5):
image_rows.append(np.concatenate(images_random[i*5:(i+1)*5], axis=2))
images = np.concatenate(image_rows, axis=1)
images = np.squeeze(images, axis=0)
scipy.misc.imsave(os.path.join(base_dir, 'random_{}.jpg'.format(step)), images)
image_rows = []
for i in range(5):
image_rows.append(np.concatenate(images_linear[i*5:(i+1)*5], axis=2))
images = np.concatenate(image_rows, axis=1)
images = np.squeeze(images, axis=0)