Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
current_modelfile_dt = [this_date.date() for this_date in FileReader(self.model_files[current_modelfile_ind]).time.datetime]
unique_obs_days = np.unique([this_date.date() for this_date in self.ices_data['time_dt']])
for counter_ind, this_day in enumerate(unique_obs_days):
if self.noisy:
print('Getting model data from day {} of {}'.format(counter_ind +1, len(unique_obs_days)))
if this_day > current_modelfile_dt[-1]:
current_modelfile_ind += 1
if current_modelfile_ind < len(self.model_files):
current_modelfile_dt = [this_date.date() for this_date in FileReader(self.model_files[current_modelfile_ind]).time.datetime]
else:
return
this_day_index = np.where(np.asarray(current_modelfile_dt) == this_day)[0]
this_day_fr = FileReader(self.model_files[current_modelfile_ind], self.model_varkeys,
dims={'time': np.arange(np.min(this_day_index), np.max(this_day_index) + 1)})
this_day_obs_inds = np.where(np.asarray([this_dt.date() for this_dt in self.ices_data['time_dt']]) == this_day)[0]
for this_record_ind in this_day_obs_inds:
for key in self.var_keys:
if self.ices_data[key][this_record_ind] >-9.99e9:
this_model_key = self.ices_model_conversion[key]
space_ind = self.model_data['node_ind'][this_record_ind]
dep_ind = self.model_data['z_ind'][this_record_ind]
time_ind = this_day_fr.closest_time(self.ices_data['time_dt'][this_record_ind])
if "+" in this_model_key:
vlist = this_model_key.split('+')
mbuffer = 0
for v in vlist:
mbuffer += getattr(this_day_fr.data, v)[time_ind, dep_ind, space_ind]
self.model_data[key][this_record_ind] = mbuffer
def test(hdff):
'''
Reads in hdf file and check if pixels are scaled in [-1, 1] range.
'''
with h5py.File(hdff, "r") as f:
X = f.get("faces")
print(np.min(X[:,:,:,0]))
print(np.max(X[:,:,:,0]))
print(np.min(X[:,:,:,1]))
print(np.max(X[:,:,:,1]))
print(np.min(X[:,:,:,2]))
print(np.max(X[:,:,:,2]))
print("Dataset size:", len(X))
assert np.max(X) <= 1.0
assert np.min(X) >= -1.0
def resizeImage(img, width, height, interpolation=cv2.INTER_CUBIC):
if img.shape[1]
idx = np.where(det2 <= 0.0)
det2[idx] = 0.0001
idx = np.where(det3 <= 0.0)
det3[idx] = 0.0001
lnQ = cst+m*np.log(det1)+n*np.log(det2)-(n+m)*np.log(det3)
# test statistic
Z = -2*rho*lnQ
# change probabilty
P = (1.-omega2)*stats.chi2.cdf(Z,[f])+omega2*stats.chi2.cdf(Z,[f+4])
P = ndimage.filters.median_filter(P, size = (3,3))
# change map
a255 = np.ones((rows,cols),dtype=np.byte)*255
a0 = a255*0
c11 = np.log(k1+0.0001)
min1 =np.min(c11)
max1 = np.max(c11)
c11 = (c11-min1)*255.0/(max1-min1)
c11 = np.where(c11<0,a0,c11)
c11 = np.where(c11>255,a255,c11)
c11 = np.where(P>(1.0-sig),a0,c11)
cmap = np.where(P>(1.0-sig),a255,c11)
# write to file system
driver = gdal.GetDriverByName(fmt)
outDataset = driver.Create(outfile,cols,rows,2,GDT_Float32)
geotransform = inDataset1.GetGeoTransform()
if geotransform is not None:
outDataset.SetGeoTransform(geotransform)
projection = inDataset1.GetProjection()
if projection is not None:
outDataset.SetProjection(projection)
outBand = outDataset.GetRasterBand(1)
outBand.WriteArray(Z,0,0)
vars = embeddings["vars"]
words_to_idx = embeddings['word_to_idx']
hypernym_df = pd.read_csv(hypernym_file, header=None, sep='\t')
hypernym_df[2] = hypernym_df[0].apply(lambda x: words_to_idx[x])
hypernym_df[3] = hypernym_df[1].apply(lambda x: words_to_idx[x])
hypernym_couples = []
print("Ranking distances")
idxs1 = hypernym_df[2].values
idxs2 = hypernym_df[3].values
n = np.max(idxs1) + 1
m = np.max(idxs2) + 1
idxs = np.arange(m)
ranks = []
avg_precision_scores = []
idxs1 = list(set(idxs1))
np.random.shuffle(idxs1)
for i, idx in tqdm.tqdm(enumerate(idxs1)):
x = [idx] * m
if args.metric == "bures_distance":
dists_ = wb.batch_W2(cp.array(means[x]), cp.array(means[idxs]), cp.array(vars[x]), cp.array(vars[idxs]))[0]
item_distances = cp.asnumpy(dists_)
elif args.metric == "bures_cosine":
scores_ = wb.bures_cosine(cp.array(means[x]), cp.array(means[idxs]), cp.array(vars[x]), cp.array(vars[idxs]))
TDW = np.zeros((np.shape(data['tas'])[0],len(years)*12),dtype = float)
for i in range(np.shape(data['tas'])[0]):
R = data['DomesticR'][i]
for j in years:
N = years.index(j)
monT = data['tas'][i,N*12:(N+1)*12]
monT[np.isnan(monT)]=0
if np.sum(monT) == 0: # if the tas data is not available for this gird, use neighbor grid with higher temp
monT1 = data['tas'][i-1,N*12:(N+1)*12]
monT2 = data['tas'][i+1,N*12:(N+1)*12]
if np.mean(monT1) >= np.mean(monT2):
tmp = (monT1-np.mean(monT1))/(np.max(monT1)-np.min(monT1))*R+1
else:
tmp = (monT2-np.mean(monT2))/(np.max(monT2)-np.min(monT2))*R+1
else:
tmp = (monT-np.mean(monT))/(np.max(monT)-np.min(monT))*R+1
TDW[i,N*12:(N+1)*12] = W[i,N]*tmp/12
return TDW
def bbox(self) -> np.ndarray:
"""Bounding box."""
mn = np.min(self.vertices, axis=0)
mx = np.max(self.vertices, axis=0)
return np.vstack((mn, mx)).T
# needs to be negative because measures clockwise
tipr = -tip.angle_real[index_2d]
tipr[np.where(tipr == 180.)] = 0.0
tipr[np.where(tipr == -180.)] = 0.0
# make sure the angle is between 0 and 360
tipr = tipr % 360
# make a dictionary of strikes with keys as period
tiprdict = dict([(ff, jj)
for ff, jj in zip(mt.period[index_2d], tipr)])
tiprlist.append(tiprdict)
#--> get min and max period
maxper = np.max([np.max(mm.keys()) for mm in ptlist if mm.keys()])
minper = np.min([np.min(mm.keys()) for mm in ptlist if mm.keys()])
# make empty arrays to put data into for easy manipulation
medpt = np.zeros((nt, nc))
medtipr = np.zeros((nt, nc))
# make a list of periods from the longest period list
plist = np.logspace(
np.log10(minper),
np.log10(maxper),
num=nt,
base=10)
pdict = dict([(ii, jj) for jj, ii in enumerate(plist)])
self._plist = plist
def __init__(self, data):
if data.size > 0:
max_str_len = max(len(str(np.max(data))),
len(str(np.min(data))))
else:
max_str_len = 0
self.format = '%{}d'.format(max_str_len)
I0 = np.where(weights_v < 1e-3)[0]
I1 = np.where(weights_v >= 1e-3)[0]
# Ensure we do not get too high weights
weights_v[I1] = 1.0/weights_v[I1]
weights_v[I0] = 1e3
I_v = wxgen.util.random_weighted(weights_v, self.policy)
I = Itime[I_v]
# Do a weighted random choice of the weights
wxgen.util.debug("Num candidates: %d" % len(weights_v))
wxgen.util.debug("Date range: %d %d" % (wxgen.util.unixtime_to_date(np.min(self._database.inittimes[Itime])), wxgen.util.unixtime_to_date(np.max(self._database.inittimes[Itime]))))
wxgen.util.debug("Found state: %s" % ' '.join(["%0.2f" % x for x in self._database._data_matching[Istart, :, I]]))
wxgen.util.debug("Found date: %s (%i)" % (wxgen.util.unixtime_to_date(self._database.inittimes[I]), I))
wxgen.util.debug("Climate: %s" % (climate_state))
wxgen.util.debug("Weight (max weight): %s (%s)" % (weights_v[I_v], np.max(weights_v)))
tr = self._database.get(I)
tr.indices = tr.indices[Istart:]
return tr