How to use the numpy.abs function in numpy

To help you get started, we’ve selected a few numpy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github QMCPACK / qmcpack / utils / afqmctools / afqmctools / hamiltonian / mol.py View on Github external
# ERI[:,jl]
    eri_col = mol.intor('int2e_sph',
                         shls_slice=(0,mol.nbas,0,mol.nbas,sj,sj+1,sl,sl+1))
    cj, cl = max(j-dims[sj],0), max(l-dims[sl],0)
    chol_vecs[0] = numpy.copy(eri_col[:,:,cj,cl].reshape(nao*nao)) / delta_max**0.5

    nchol = 0
    while abs(delta_max) > max_error:
        # Update cholesky vector
        start = time.time()
        # M'_ii = \sum_x L_i^x L_i^x
        Mapprox += chol_vecs[nchol] * chol_vecs[nchol]
        # D_ii = M_ii - M'_ii
        delta = diag - Mapprox
        nu = numpy.argmax(numpy.abs(delta))
        delta_max = numpy.abs(delta[nu])
        # Compute ERI chunk.
        # shls_slice computes shells of integrals as determined by the angular
        # momentum of the basis function and the number of contraction
        # coefficients. Need to search for AO index within this shell indexing
        # scheme.
        # AO index.
        j = nu // nao
        l = nu % nao
        # Associated shell index.
        sj = numpy.searchsorted(dims, j)
        sl = numpy.searchsorted(dims, l)
        if dims[sj] != j and j != 0:
            sj -= 1
        if dims[sl] != l and l != 0:
            sl -= 1
        # Compute ERI chunk.
github simpeg / simpeg / tests / em / new_fdem / inverse / adjoint / test_FDEM_adjointHJ.py View on Github external
m  = np.log(np.ones(prb.sigmaMap.nP)*CONDUCTIVITY)
    mu = np.ones(prb.mesh.nC)*MU

    if addrandoms is True:
        m  = m + np.random.randn(prb.sigmaMap.nP)*np.log(CONDUCTIVITY)*1e-1
        mu = mu + np.random.randn(prb.mesh.nC)*MU*1e-1

    survey = prb.survey
    u = prb.fields(m)

    v = np.random.rand(survey.nD)
    w = np.random.rand(prb.mesh.nC)

    vJw = v.dot(prb.Jvec(m, w, u))
    wJtv = w.dot(prb.Jtvec(m, v, u))
    tol = np.max([TOL*(10**int(np.log10(np.abs(vJw)))),FLR])
    print(vJw, wJtv, vJw - wJtv, tol, np.abs(vJw - wJtv) < tol)
    return np.abs(vJw - wJtv) < tol
github jakobrunge / tigramite / tigramite / independence_tests.py View on Github external
pval : float
            p-value
        """

        x_vals = self._get_single_residuals(array, target_var=0)
        y_vals = self._get_single_residuals(array, target_var=1)
        array_resid = np.array([x_vals, y_vals])
        xyz_resid = np.array([0, 1])

        null_dist = self._get_shuffle_dist(array_resid, xyz_resid,
                                           self.get_dependence_measure,
                                           sig_samples=self.sig_samples,
                                           sig_blocklength=self.sig_blocklength,
                                           verbosity=self.verbosity)

        pval = (null_dist >= np.abs(value)).mean()

        # Adjust p-value for two-sided measures
        if pval < 1.:
            pval *= 2.

        if return_null_dist:
            return pval, null_dist
        return pval
github dennycn / python_practice_of_data_analysis_and_mining / chapter13 / demo / code / GM11.py View on Github external
def GM11(x0):  # 自定义灰色预测函数
    import numpy as np
    x1 = x0.cumsum()  # 1-AGO序列
    z1 = (x1[:len(x1) - 1] + x1[1:]) / 2.0  # 紧邻均值(MEAN)生成序列
    z1 = z1.reshape((len(z1), 1))
    B = np.append(-z1, np.ones_like(z1), axis=1)
    Yn = x0[1:].reshape((len(x0) - 1, 1))
    [[a], [b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn)  # 计算参数
    f = lambda k: (x0[0] - b / a) * np.exp(-a * (k - 1)) - \
        (x0[0] - b / a) * np.exp(-a * (k - 2))  # 还原值
    delta = np.abs(x0 - np.array([f(i) for i in range(1, len(x0) + 1)]))
    C = delta.std() / x0.std()
    P = 1.0 * (np.abs(delta - delta.mean()) <
               0.6745 * x0.std()).sum() / len(x0)
    return f, a, b, x0[0], C, P  # 返回灰色预测函数、a、b、首项、方差比、小残差概率
github dgarrick / headliner / src / data / tsne.py View on Github external
for i in range(n):

        # Print progress
        if i % 500 == 0:
            print "Computing P-values for point ", i, " of ", n, "..."

        # Compute the Gaussian kernel and entropy for the current precision
        betamin = -math.inf
        betamax = math.inf
        d_i = d[i, math.concatenate((math.r_[0:i], math.r_[i + 1:n]))]
        (h, this_p) = h_beta(d_i, beta[i])

        # Evaluate whether the perplexity is within tolerance
        h_diff = h - log_u
        tries = 0
        while math.abs(h_diff) > tol and tries < 50:
            # If not, increase or decrease precision
            if h_diff > 0:
                betamin = beta[i].copy()
                if betamax == math.inf or betamax == -math.inf:
                    beta[i] *= 2
                else:
                    beta[i] = (beta[i] + betamax) / 2
            else:
                betamax = beta[i].copy()
                if betamin == math.inf or betamin == -math.inf:
                    beta[i] /= 2
                else:
                    beta[i] = (beta[i] + betamin) / 2

            # Recompute the values
            (h, this_p) = h_beta(d_i, beta[i])
github ismms-himc / clustergrammer2 / clustergrammer_glidget / clustergrammer / make_sim_mat.py View on Github external
def adjust_filter_sim(inst_dm, filter_sim, keep_top=20000):
  import pandas as pd
  import numpy as np

  inst_df = pd.DataFrame(inst_dm)
  val_vect = np.abs(inst_df.values.flatten())

  val_vect = val_vect[val_vect > 0.01]

  if len(val_vect) > keep_top:


    inst_series = pd.Series(val_vect)
    inst_series.sort(ascending=False)

    sort_values = inst_series.values

    filter_sim = sort_values[keep_top]

  return filter_sim
github jddes / Frequency-comb-DPLL / digital_servo_python_gui / LoopFiltersUI.py View on Github external
if (fdf == 0) or (fd == 0):
			gain_array = 0*f_array
		else:
			# Draw the D gain curve:
			if self.qchk_bKpCrossing.isChecked() == False:
				# fi relative to 0 dB crossing
				gain_array = fdf/fd + 0*f_array
			else:
				# fi relative to kp dB crossing
				gain_array = 10**(kp/20) * fdf/fd + 0*f_array
	#        print(20*np.log10(gain_array))
		self.curve_fdf.setData(f_array, 20*np.log10(gain_array + self.MINIMUM_GAIN_DISPLAY))


		f_array = np.logspace(np.log10(fmin), np.log10(fmax), 100)
		actual_gain_array = np.abs(self.sl.pll[self.filter_number].get_current_transfer_function(f_array, self.sl.fs) * self.kc)
		self.curve_actual.setData(f_array, 20*np.log10(actual_gain_array + self.MINIMUM_GAIN_DISPLAY))

		# print('LoopFiltersUI: setting X range: %f, %f' % (fmin, fmax))
		# print('LoopFiltersUI: setting Y range: %f, %f' % (gain_min, gain_max))
		#self.qplot_tf.setXRange(np.log10(fmin), np.log10(fmax))
		self.qplot_tf.setYRange(gain_min, gain_max)
github danielvarga / earth-moving-generative-net / kohonen.py View on Github external
def distanceMatrix(x, y):
    xL2S = np.sum(x*x,axis=-1)
    yL2S = np.sum(y*y,axis=-1)
    xL2SM = np.tile(xL2S, (len(y), 1))
    yL2SM = np.tile(yL2S, (len(x), 1))
    squaredDistances = xL2SM + yL2SM.T - 2.0*y.dot(x.T)
    # elementwise. abs is to supress negative values caused by rounding errors.
    # TODO Should switch to squared distances everywhere, but be careful about fitAndVis fitAndVisNNBaseline.
    distances = np.sqrt(np.abs(squaredDistances))
    return distances
github ImperialCollegeLondon / sharpy / sharpy / postproc / asymptoticstability.py View on Github external
rigid_body_mode = eigenvector[-10:]

        max_angle = 10 * np.pi/180

        v = rigid_body_mode[0:3].real
        omega = rigid_body_mode[3:6].real
        dquat = rigid_body_mode[-4:]
        euler = algebra.quat2euler(dquat)
        max_euler = np.max(np.abs(euler))

        if max_euler >= max_angle:
            fact = max_euler / max_angle
        else:
            fact = 1

        if np.abs(freq_d) < 1e-3:
            fact = 1 / np.max(np.abs(v))
        else:
            max_omega = max_angle * freq_d
            fact = np.max(np.abs(omega)) / max_omega

        return fact
github scikit-learn / scikit-learn / sklearn / cross_decomposition / _pls.py View on Github external
def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06,
                                 norm_y_weights=False):
    """Inner loop of the iterative NIPALS algorithm.

    Provides an alternative to the svd(X'Y); returns the first left and right
    singular vectors of X'Y.  See PLS for the meaning of the parameters.  It is
    similar to the Power method for determining the eigenvectors and
    eigenvalues of a X'Y.
    """
    for col in Y.T:
        if np.any(np.abs(col) > np.finfo(np.double).eps):
            y_score = col.reshape(len(col), 1)
            break

    x_weights_old = 0
    ite = 1
    X_pinv = Y_pinv = None
    eps = np.finfo(X.dtype).eps

    if mode == "B":
        # Uses condition from scipy<1.3 in pinv2 which was changed in
        # https://github.com/scipy/scipy/pull/10067. In scipy 1.3, the
        # condition was changed to depend on the largest singular value
        X_t = X.dtype.char.lower()
        Y_t = Y.dtype.char.lower()
        factor = {'f': 1E3, 'd': 1E6}