Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
simple_square_grid,
modify_core_nodes=True,
function=lambda grid, t: -(grid.x_of_node + grid.y_of_node + (0 * t)),
)
params = {
"grid": simple_square_grid,
"clock": clock_simple,
"boundary_handlers": {"mynew_bh": gfblh},
}
model = Basic(**params)
bh = model.boundary_handlers["mynew_bh"]
# assertion tests
assert "mynew_bh" in model.boundary_handlers
assert_array_equal(np.where(bh.nodes_to_lower)[0], model.grid.core_nodes)
step = 10.0
model.run_one_step(step)
dzdt = -(model.grid.x_of_node + model.grid.y_of_node)
truth_z = -1.0 * dzdt * step
assert_array_equal(
model.z[model.grid.core_nodes], truth_z[model.grid.core_nodes]
)
acquisition_scheme, data[mask_GM_refine][indices_gm_selected])
# for GM, the 10% highest SDM valued voxels are selected.
N_threshold = int(np.sum(mask_CSF_refine) * csf_perc)
indices_csf_selected = np.argsort(SDM[mask_CSF_refine])[::-1][:N_threshold]
S0_csf, TR1_csf_model = estimate_TR1_isotropic_tissue_response_model(
acquisition_scheme, data[mask_CSF_refine][indices_csf_selected])
# generate selected WM/GM/CSF response function voxels masks.
pos_WM_refine = np.c_[np.where(mask_WM_refine)]
mask_WM_selected = np.zeros_like(mask_WM_refine)
pos_WM_selected = pos_WM_refine[indices_wm_selected]
for pos in pos_WM_selected:
mask_WM_selected[pos[0], pos[1], pos[2]] = 1
pos_GM_refine = np.c_[np.where(mask_GM_refine)]
mask_GM_selected = np.zeros_like(mask_GM_refine)
pos_GM_selected = pos_GM_refine[indices_gm_selected]
for pos in pos_GM_selected:
mask_GM_selected[pos[0], pos[1], pos[2]] = 1
pos_CSF_refine = np.c_[np.where(mask_CSF_refine)]
mask_CSF_selected = np.zeros_like(mask_CSF_refine)
pos_CSF_selected = pos_CSF_refine[indices_csf_selected]
for pos in pos_CSF_selected:
mask_CSF_selected[pos[0], pos[1], pos[2]] = 1
three_tissue_selection = np.array(
[mask_WM_selected, mask_GM_selected, mask_CSF_selected], dtype=float)
three_tissue_selection = np.transpose(three_tissue_selection, (1, 2, 3, 0))
return ([S0_wm, S0_gm, S0_csf],
def length(batch_x):
non_unk = [x > 0 for x in batch_x]
leng = []
del_list = []
for idx, token in enumerate(non_unk):
tmp = np.where(token)[0]
if len(tmp) != 0:
if tmp[-1] == 0:
del_list.append(idx)
else:
leng.append(tmp[-1])
else:
del_list.append(idx)
return np.array(leng), del_list
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
intersection = w * h
overlap = intersection / (areas[i] + areas[order[1:]] - intersection)
inds = np.where(overlap <= thresh)[0]
order = order[inds + 1]
return keep
plt.subplot(121)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
np.arange(y_min, y_max, plot_step))
Z = evaluate_reader(reader, 'Fisher', np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=cmap, vmin=Z.min(), vmax=Z.max(),
levels=np.linspace(Z.min(), Z.max(), 50))
plt.contour(xx, yy, Z, levels=[0], linestyles='dashed')
plt.axis("tight")
# Plot the training points
for i, n, c in zip([-1, 1], class_names, plot_colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1],
c=c, cmap=cmap,
label="Class %s" % n)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Decision Boundary')
# Plot the two-class decision scores
ax = plt.subplot(122)
ax.xaxis.grid(False)
for i, n, c in zip([-1, 1], class_names, plot_colors):
plt.hist(twoclass_output[y_test == i],
bins=20,
def synchronize(self, input):
score = self.autocorrelate(input)
# look for points outstanding in their neighborhood
# by explicit comparison
l = 25
M = scipy.linalg.toeplitz(np.r_[score, np.zeros(2*l)], np.zeros(2*l+1)).T
ext_input = np.r_[np.zeros(l), score, np.zeros(l)]
M[:l] = M[:l] < ext_input
M[l+1:] = M[l+1:] < ext_input
M[l] = True
idx = np.where(M.all(0))[0] - l
startIndex = 16*idx - 64
startIndex[np.where(startIndex<0)] = 0
return startIndex
t : array
The parametric vector.
knots : array
The knot vector.
n : int
The number of intervals.
Returns
-------
bfun : array
The spline basis function evaluated for given values.
"""
nt = len(t)
bfun = nm.zeros((nt,n), dtype=nm.float64)
for ii in range(n):
idxs = nm.where(nm.logical_and(knots[ii] <= t,
t < knots[ii + 1]))[0]
bfun[idxs,ii] = 1.0
return bfun
center[2] - radius:center[2] + radius + 1]
local_origin = point - radius * pitch # origin of local voxels
# Fill internal regions
if fill:
regions, n = ndimage.measurements.label(~voxels)
distance = ndimage.morphology.distance_transform_cdt(~voxels)
representatives = [
np.unravel_index((distance * (regions == i)).argmax(),
distance.shape) for i in range(1, n + 1)]
contains = mesh.contains(
np.asarray(representatives) *
pitch +
local_origin)
where = np.where(contains)[0] + 1
# use in1d vs isin for older numpy versions
internal = np.in1d(regions.flatten(), where).reshape(regions.shape)
voxels = np.logical_or(voxels, internal)
return base.VoxelGrid(voxels, tr.translation_matrix(local_origin))
# sort ohem scores
if self.mode==0:
disable_inds = np.random.choice(bg_inds, size=(len(bg_inds) - num_bg), replace=False)
labels[disable_inds] = -1
else:
neg_ohem_scores = fg_score[bg_inds]
order_neg_ohem_scores = neg_ohem_scores.ravel().argsort()[::-1]
sampled_inds = bg_inds[order_neg_ohem_scores[:num_bg]]
#print('sampled_inds_bg', sampled_inds, file=sys.stderr)
labels[bg_inds] = -1
labels[sampled_inds] = 0
if n_fg>0:
order0_labels = labels.reshape( (1, A, -1) ).transpose( (0, 2, 1) ).reshape( (-1,) )
bbox_fg_inds = np.where(order0_labels>0)[0]
#print('bbox_fg_inds, order0 ', bbox_fg_inds, file=sys.stderr)
_anchor_weight[bbox_fg_inds,:] = 1.0
anchor_weight[ibatch] = _anchor_weight
valid_count[ibatch][0] = n_fg
#if self.prefix=='face':
# #print('fg-bg', self.stride, n_fg, num_bg)
# STAT[0]+=1
# STAT[self.stride][0] += config.TRAIN.RPN_BATCH_SIZE
# STAT[self.stride][1] += n_fg
# STAT[self.stride][2] += np.sum(fg_score[fg_inds]>=0)
# #_stat[0] += config.TRAIN.RPN_BATCH_SIZE
# #_stat[1] += n_fg
# #_stat[2] += np.sum(fg_score[fg_inds]>=0)
# #print('stride num_fg', self.stride, n_fg, file=sys.stderr)
# #ACC[self.stride] += np.sum(fg_score[fg_inds]>=0)