Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_compare_rankings():
"""``compare`` should work as expected for rankings."""
params = np.array([0, 100, -100, -100, -100])
x1 = compare((3, 0), params, rank=True)
assert np.array_equal(x1, np.array([0, 3]))
x2 = compare((3, 0, 1), params, rank=True)
assert np.array_equal(x2, np.array([1, 0, 3]))
def rerank_top_n(self,query_feats,ranking,query_name):
distances = []
locations = []
frames = []
class_ids = []
#query_feats = query_feats.T
# query class (+1 because class 0 is the background)
cls_ind = np.where(np.array(self.queries) == str(query_name))[0][0] + 1
for im_ in ranking[0:self.top_n]:
if self.dataset is 'paris':
frame_to_read = os.path.join(self.image_path,im_.split('_')[1],im_ + '.jpg')
elif self.dataset is 'oxford':
frame_to_read = os.path.join(self.image_path,im_ + '.jpg')
frames.append(frame_to_read)
# Get features of current element
feats,boxes,scores = self.extract_feat_image(frame_to_read)
# we rank based on class scores
if self.class_scores:
scores = feats[:,cls_ind]
saved_n = np.array(self.saved_n)
saved_bounditer = np.array(self.saved_bounditer)
saved_scale = np.array(self.saved_scale)
saved_batch = np.array(self.saved_batch)
nsaved = len(saved_n)
# Grab results from new run.
new_id = np.array(self.new_id) + max(saved_id) + 1
new_u = np.array(self.new_u)
new_v = np.array(self.new_v)
new_logl = np.array(self.new_logl)
new_nc = np.array(self.new_nc)
new_boundidx = np.array(self.new_boundidx)
new_it = np.array(self.new_it)
new_n = np.array(self.new_n)
new_bounditer = np.array(self.new_bounditer)
new_scale = np.array(self.new_scale)
nnew = len(new_n)
llmin, llmax = self.new_logl_min, self.new_logl_max
# Reset saved results.
self.saved_id = []
self.saved_u = []
self.saved_v = []
self.saved_logl = []
self.saved_logvol = []
self.saved_logwt = []
self.saved_logz = []
self.saved_logzvar = []
self.saved_h = []
self.saved_nc = []
self.saved_boundidx = []
a2 = np.arange(a.size).reshape(a.shape) if wrt is a else np.zeros(a.shape)
b2 = np.arange(b.size).reshape(b.shape) if (wrt is b and wrt is not a) else np.zeros(b.shape)
IS = np.arange(output_sz)
JS = np.asarray((np.add(a2,b2)).ravel(), np.uint32)
_bs_setup_data2[uid] = sp.csc_matrix((np.arange(IS.size), (IS, JS)), shape=(output_sz, input_sz))
result = copy_copy(_bs_setup_data2[uid])
if isinstance(data, np.ndarray):
result.data = data[result.data]
else: # assumed scalar
result.data = np.empty(result.nnz)
result.data.fill(data)
if np.prod(result.shape) == 1:
return np.array(data)
else:
return result
self.va_t = self._va_t = np.array(self.PV_model.va)
self.ma_absolute_t = self._ma_absolute_t = np.array(abs(self.PV_model.ma))
self.Varms_t = self._Varms_t = np.array(abs(self.PV_model.va)/math.sqrt(2))
if type(self.PV_model).__name__ == 'SolarPV_DER_ThreePhase':
self.mb_absolute_t = self._mb_absolute_t = np.array(abs(self.PV_model.mb))
self.mc_absolute_t = self._mc_absolute_t = np.array(abs(self.PV_model.mc))
self.Vbrms_t = self._Vbrms_t = np.array(abs(self.PV_model.vb)/math.sqrt(2))
self.Vcrms_t = self._Vcrms_t = np.array(abs(self.PV_model.vc)/math.sqrt(2))
self.ib_t = self._ib_t = np.array(self.PV_model.ib)
self.mb_t = self._mb_t = np.array(self.PV_model.mb)
self.vtb_t = self._vtb_t = np.array(self.PV_model.vtb)
self.vb_t = self._vb_t = np.array(self.PV_model.vb)
self.ic_t = self._ic_t = np.array(self.PV_model.ic)
self.mc_t = self._mc_t = np.array(self.PV_model.mc)
self.vtc_t = self._vtc_t = np.array(self.PV_model.vtc)
self.vc_t = self._vc_t = np.array(self.PV_model.vc)
self.Irms_t = self._Irms_t = np.array(self.PV_model.Irms)
self.Ppv_t = self._Ppv_t = np.array(self.PV_model.Ppv)
self.S_PCC_t = self._S_PCC_t = np.array(self.PV_model.S_PCC)
self.S_t = self._S_t = np.array(self.PV_model.S)
self.Vtrms_t = self._Vtrms_t = np.array(self.PV_model.Vtrms)
self.Vrms_t = self._Vrms_t = np.array(self.PV_model.Vrms)
self.upperImageCanvas.create_image(0, 0, image=photo,
anchor=tk.NW)
# run tracking
frame = imutils.resize(frame, height=400)
height, width = frame.shape[:2]
frame = frame[:, 0:int(width / self.resizeFactor)]
# apply bilateral filter to preserve edges
blurred = cv2.bilateralFilter(frame, 9, 75, 75)
# convert to hsv colour space
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
# threshold image to find green tennis ball
mask = cv2.inRange(hsv, np.array(
[self.slider_pos[3], self.slider_pos[4],
self.slider_pos[5]]),
np.array(
[self.slider_pos[0], self.slider_pos[1],
self.slider_pos[2]]))
# perform a series of dilations and erosions to remove noise
mask = cv2.erode(mask, None, iterations=10)
mask = cv2.dilate(mask, None, iterations=10)
# find contours in thresholded image
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
center = None
def poly_hartley_sturm(a, b, c, d, fl, fr):
r_coeff = np.array([
-a*b*d**2 + b**2*c*d,
# t
-a**2*d**2 + b**4 + b**2*c**2 + 2*b**2*d**2*fr**2 + d**4*fr**4,
# t ** 2
-a**2*c*d + 4*a*b**3 + a*b*c**2 - 2*a*b*d**2*fl**2 + 4*a*b*d**2*fr**2
+ 2*b**2*c*d*fl**2 + 4*b**2*c*d*fr**2 + 4*c*d**3*fr**4,
# t ** 3
6*a**2*b**2 - 2*a**2*d**2*fl**2 + 2*a**2*d**2*fr**2 + 8*a*b*c*d*fr**2
+ 2*b**2*c**2*fl**2 + 2*b**2*c**2*fr**2 + 6*c**2*d**2*fr**4,
# t ** 4
4*a**3*b - 2*a**2*c*d*fl**2 + 4*a**2*c*d*fr**2 + 2*a*b*c**2*fl**2 +
4*a*b*c**2*fr**2 - a*b*d**2*fl**4 + b**2*c*d*fl**4 + 4*c**3*d*fr**4,
# t ** 5
a**4 + 2*a**2*c**2*fr**2 - a**2*d**2*fl**4 + b**2*c**2*fl**4 +
c**4*fr**4,
# t ** 6
keys,
attention_w):
Q = np.dot(queries, attention_w[0,:,:])
K = np.dot(keys, attention_w[1,:,:])
V = np.dot(keys, attention_w[2,:,:])
# Multiplication
outputs1 = np.array([np.dot(Q[i,:,:], K[i,:,:].T) for i in range(batch_size)])
# Scale
outputs2 = outputs1/(K.shape[2]** 0.5)
outputs2[outputs2==0] = -2**32 + 1
# SoftMax
outputs3 = np.exp(outputs2)
outputs4 = np.sum(outputs3,axis=2)
outputs5 = np.array([outputs3[i,:,:]/outputs4[i,:].reshape(10,1) for i in range(batch_size)])
outputs6 = np.array([np.dot(outputs5[i,:,:], V[i,:,:]) for i in range(batch_size)])
outputs7 = np.array([np.dot(outputs6[i,:,:], attention_w[3,:,:]) for i in range(batch_size)])
# Add residual connections
outputs8 = outputs7 + queries
return [outputs1, outputs2, outputs5, outputs6, outputs7, outputs8, Q, K, V, queries, keys]
def posterior_samples(self, ndraw=1500, burnin=50):
state = self.initial_state
gradient_map = lambda x: -self.smooth_objective(x, 'grad')
projection_map = lambda x: x
stepsize = 1. / self.E
sampler = projected_langevin(state, gradient_map, projection_map, stepsize)
samples = []
for i in range(ndraw + burnin):
sampler.next()
if i >= burnin:
samples.append(sampler.state.copy())
samples = np.array(samples)
return samples
def unscale_dimension(array_dim, scale, offset):
return np.round((np.array(array_dim) - offset) / scale)