How to use the torch.nn.ReLU function in torch

To help you get started, we’ve selected a few torch examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github NUSTM / pytorch-dnnnlp / pytorch / layer.py View on Github external
def __init__(self, input_size, n_hidden, n_head, drop_prob=0.1):
        """
        The whole transformer layer
        * input_size [int]: input sizes for query & key & value
        * n_hidden [int]: number of hidden weight matrix nodes
        * n_head [int]: number of attentions
        """
        super(transformer_layer, self).__init__()

        self.attention = multi_head_attention_layer(input_size, n_hidden=n_hidden, n_head=n_head)
        self.drop_out = nn.Dropout(drop_prob)
        self.norm_1 = nn.LayerNorm(input_size)
        self.feed_forward = nn.Sequential(
            nn.Linear(input_size, input_size),
            nn.ReLU(),
            nn.Dropout(drop_prob),
            nn.Linear(input_size, input_size),
        )
        self.norm_2 = nn.LayerNorm(input_size)
github locuslab / convex_adversarial / examples / problems.py View on Github external
def mnist_model(): 
    model = nn.Sequential(
        nn.Conv2d(1, 16, 4, stride=2, padding=1),
        nn.ReLU(),
        nn.Conv2d(16, 32, 4, stride=2, padding=1),
        nn.ReLU(),
        Flatten(),
        nn.Linear(32*7*7,100),
        nn.ReLU(),
        nn.Linear(100, 10)
    )
    return model
github epic-kitchens / action-models / archs / bn_inception.py View on Github external
)
        self.inception_4a_relu_3x3 = nn.ReLU(inplace)
        self.inception_4a_double_3x3_reduce = nn.Conv2d(
            576, 96, kernel_size=(1, 1), stride=(1, 1)
        )
        self.inception_4a_double_3x3_reduce_bn = nn.BatchNorm2d(
            96, eps=1e-05, momentum=0.9, affine=True
        )
        self.inception_4a_relu_double_3x3_reduce = nn.ReLU(inplace)
        self.inception_4a_double_3x3_1 = nn.Conv2d(
            96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        self.inception_4a_double_3x3_1_bn = nn.BatchNorm2d(
            128, eps=1e-05, momentum=0.9, affine=True
        )
        self.inception_4a_relu_double_3x3_1 = nn.ReLU(inplace)
        self.inception_4a_double_3x3_2 = nn.Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        self.inception_4a_double_3x3_2_bn = nn.BatchNorm2d(
            128, eps=1e-05, momentum=0.9, affine=True
        )
        self.inception_4a_relu_double_3x3_2 = nn.ReLU(inplace)
        self.inception_4a_pool = nn.AvgPool2d(
            3, stride=1, padding=1, ceil_mode=True, count_include_pad=True
        )
        self.inception_4a_pool_proj = nn.Conv2d(
            576, 128, kernel_size=(1, 1), stride=(1, 1)
        )
        self.inception_4a_pool_proj_bn = nn.BatchNorm2d(
            128, eps=1e-05, momentum=0.9, affine=True
        )
github trakaros / MPIIGaze / python / pytorch / models / zhang.py View on Github external
# compute conv feature size
		input_shape = (1, 1, 36, 60)#m1: [32 x 3600], m2: [115202 x 500]
										#[32 x 3600], m2: [3602 x 500]
		with torch.no_grad():#https://stackoverflow.com/questions/53784998/how-are-the-pytorch-dimensions-for-linear-layers-calculated
			self.feature_size = self._forward_conv(
           torch.zeros(*input_shape)).view(-1).size(0)
			#print(self.feature_size)

		# print("numOfFeatures:",self.feature_size)

		# Fully connected-500
		self.fc500 = nn.Linear(self.feature_size, 500)
		#self.fc500 = nn.Linear(50*14*8, 500)

		#Relu function
		self.relu = nn.ReLU()

		# Fully connected-2
		self.fc2 = nn.Linear(502, 2)
github ddrrrr / projectRUL / cnn_gru_pytorch.py View on Github external
def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        m  = OrderedDict()
        m['conv1'] = nn.Conv1d(inplanes, planes, kernel_size=1, bias=False)
        m['bn1'] = nn.BatchNorm1d(planes)
        m['relu1'] = nn.ReLU(inplace=True)
        m['conv2'] = nn.Conv1d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        m['bn2'] = nn.BatchNorm1d(planes)
        m['relu2'] = nn.ReLU(inplace=True)
        m['conv3'] = nn.Conv1d(planes, planes * 4, kernel_size=1, bias=False)
        m['bn3'] = nn.BatchNorm1d(planes * 4)
        self.group1 = nn.Sequential(m)

        self.relu= nn.Sequential(nn.ReLU(inplace=True))
        self.downsample = downsample
github dicarlolab / CORnet / cornet / cornet_s.py View on Github external
def CORnet_S():
    model = nn.Sequential(OrderedDict([
        ('V1', nn.Sequential(OrderedDict([  # this one is custom to save GPU memory
            ('conv1', nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                            bias=False)),
            ('norm1', nn.BatchNorm2d(64)),
            ('nonlin1', nn.ReLU(inplace=True)),
            ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
            ('conv2', nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1,
                            bias=False)),
            ('norm2', nn.BatchNorm2d(64)),
            ('nonlin2', nn.ReLU(inplace=True)),
            ('output', Identity())
        ]))),
        ('V2', CORblock_S(64, 128, times=2)),
        ('V4', CORblock_S(128, 256, times=4)),
        ('IT', CORblock_S(256, 512, times=2)),
        ('decoder', nn.Sequential(OrderedDict([
            ('avgpool', nn.AdaptiveAvgPool2d(1)),
            ('flatten', Flatten()),
            ('linear', nn.Linear(512, 1000)),
            ('output', Identity())
        ])))
github Sampson-Lee / myDRGAN / run / train_val_cnn_DRGAN.py View on Github external
def network(args):
            convLayers = [
                    nn.Conv2d(args.channel_num, 32, 3, 1, 1, bias=False), # Bxchx96x96 -> Bx32x96x96
                    nn.BatchNorm2d(32)]
            if args.use_ReLU:
                convLayers += [nn.ReLU(True)]
            elif args.use_ELU:
                convLayers += [nn.ELU()]
            convLayers += [
                    nn.Conv2d(32, 64, 3, 1, 1, bias=False), # Bx32x96x96 -> Bx64x96x96
                    nn.BatchNorm2d(64)]
            if args.use_ReLU:
                convLayers += [nn.ReLU(True)]
            elif args.use_ELU:
                convLayers += [nn.ELU()]
                
            for i in range(1,5):
                if args.use_strided:
                    convLayers += [
                            nn.ZeroPad2d((0, 1, 0, 1)),   # Bx64*ix96x96 -> Bx64*ix97x97
                            nn.Conv2d(64*i, 64*i, 3, 2, 0, bias=False), # Bx64x97x97 -> Bx64x48x48
                            nn.BatchNorm2d(64*i)]
github epic-kitchens / action-models / archs / bn_inception.py View on Github external
)
        self.inception_5b_relu_double_3x3_reduce = nn.ReLU(inplace)
        self.inception_5b_double_3x3_1 = nn.Conv2d(
            192, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        self.inception_5b_double_3x3_1_bn = nn.BatchNorm2d(
            224, eps=1e-05, momentum=0.9, affine=True
        )
        self.inception_5b_relu_double_3x3_1 = nn.ReLU(inplace)
        self.inception_5b_double_3x3_2 = nn.Conv2d(
            224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        self.inception_5b_double_3x3_2_bn = nn.BatchNorm2d(
            224, eps=1e-05, momentum=0.9, affine=True
        )
        self.inception_5b_relu_double_3x3_2 = nn.ReLU(inplace)
        self.inception_5b_pool = nn.MaxPool2d(
            (3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), ceil_mode=True
        )
        self.inception_5b_pool_proj = nn.Conv2d(
            1024, 128, kernel_size=(1, 1), stride=(1, 1)
        )
        self.inception_5b_pool_proj_bn = nn.BatchNorm2d(
            128, eps=1e-05, momentum=0.9, affine=True
        )
        self.inception_5b_relu_pool_proj = nn.ReLU(inplace)
        self.global_pool = nn.AvgPool2d(
            7, stride=1, padding=0, ceil_mode=True, count_include_pad=True
        )
        self.fc = nn.Linear(1024, num_classes)
github donghaozhang / Fast_Segmentation / history / debug7.py View on Github external
def __init__(self, in_ch, out_ch):
		super(double_conv, self).__init__()
		self.conv = nn.Sequential(
			nn.Conv2d(in_ch, out_ch, 3, padding=1),
			nn.BatchNorm2d(out_ch),
			nn.ReLU(inplace=True),
			nn.Conv2d(out_ch, out_ch, 3, padding=1),
			nn.BatchNorm2d(out_ch),
			nn.ReLU(inplace=True)
		)
github kmaninis / OSVOS-PyTorch / Hourglass.py View on Github external
super(Net_SHG, self).__init__()
        if blockstr == 'ConvBlock':
            block = ConvBlock
        elif blockstr == 'BasicBlock':
            block = BasicBlock
        elif blockstr == 'BottleNeck':
            block = BottleNeck
        elif blockstr == 'BottleneckPreact':
            block = BottleneckPreact

        print('Initializing {} hourglasses with {} blocks'.format(nStack, blockstr))

        self.conv1 = nn.Conv2d(3, nFeat/4, kernel_size=7, stride=2, padding=3,
                               bias=False)  # 128
        self.bn1 = nn.BatchNorm2d(nFeat/4)
        self.relu = nn.ReLU(inplace=True)

        self.r1 = block(nFeat/4, nFeat/2)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.r4 = block(nFeat/2, nFeat/2)
        self.r5 = block(nFeat/2, nFeat)

        self.up4 = nn.Upsample(scale_factor=4, mode='bilinear')

        hg = []
        convout = []
        for i in range(0, nStack):
            layers = []
            layers.append(HourGlass(nHGscales, block, nFeat, nModules))

            for j in range(0, nModules):
                layers.append(self._make_layer(block, nFeat, nModules))