How to use the torch.nn.Conv2d function in torch

To help you get started, we’ve selected a few torch examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github StanfordVL / GibsonEnvV2 / gibson2 / learn / completion.py View on Github external
norm(nf * 4, momentum=alpha),
                nn.LeakyReLU(0.1),

                nn.ConvTranspose2d(nf * 4, nf, kernel_size=4, stride=2, padding=1),
                norm(nf, momentum=alpha),
                nn.LeakyReLU(0.1),

                nn.Conv2d(nf, nf, kernel_size=3, stride=1, padding=1),
                norm(nf, momentum=alpha),
                nn.LeakyReLU(0.1),

                nn.ConvTranspose2d(nf, nf // 4, kernel_size=4, stride=2, padding=1),
                norm(nf // 4, momentum=alpha),
                nn.LeakyReLU(0.1),

                nn.Conv2d(nf // 4, nf // 4, kernel_size=3, stride=1, padding=1),
                norm(nf // 4, momentum=alpha),
                nn.LeakyReLU(0.1),
                nn.Conv2d(nf // 4, 3, kernel_size=3, stride=1, padding=1),
            )
github pytorchbearer / torchbearer / tests / callbacks / test_gradient_clipping.py View on Github external
def test_given_params(self, mock_clip):
        model = nn.Sequential(nn.Conv2d(3, 3, 3))
        model.parameters = Mock(return_value=-1)
        state = {torchbearer.MODEL: model}

        clipper = GradientNormClipping(5, params=model.parameters())

        clipper.on_start(state)
        clipper.on_backward(state)

        self.assertTrue(mock_clip.mock_calls[0][1][0] == -1)
github rwightman / pytorch-nips2017-adversarial / python / models / wrn50_2.py View on Github external
activation_fn,
                              nn.Conv2d(1024, 2048, (1, 1), (1, 1), (0, 0), 1, 1, bias=False),
                              nn.BatchNorm2d(2048),
                          ),
                          Lambda(lambda x: x),  # Identity,
                          ),
                LambdaReduce(lambda x, y: x + y),  # CAddTable,
                activation_fn,
            ),
            nn.Sequential(  # Sequential,
                LambdaMap(lambda x: x,  # ConcatTable,
                          nn.Sequential(  # Sequential,
                              nn.Conv2d(2048, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False),
                              nn.BatchNorm2d(1024),
                              activation_fn,
                              nn.Conv2d(1024, 1024, (3, 3), (1, 1), (1, 1), 1, 1, bias=False),
                              nn.BatchNorm2d(1024),
                              activation_fn,
                              nn.Conv2d(1024, 2048, (1, 1), (1, 1), (0, 0), 1, 1, bias=False),
                              nn.BatchNorm2d(2048),
                          ),
                          Lambda(lambda x: x),  # Identity,
                          ),
                LambdaReduce(lambda x, y: x + y),  # CAddTable,
                activation_fn,
            ),
        ),
    )
    return features
github BloodAxe / pytorch-toolbelt / pytorch_toolbelt / modules / backbone / senet.py View on Github external
def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None):
        super(SEResNetBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(
            inplanes, planes, kernel_size=1, bias=False, stride=stride
        )
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(
            planes, planes, kernel_size=3, padding=1, groups=groups, bias=False
        )
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride
github soeaver / pytorch-priv / models / imagenet / airx.py View on Github external
Args:
            baseWidth: baseWidth for AIRX.
            cardinality: number of convolution groups.
            layers: config of layers, e.g., [3, 4, 6, 3]
            num_classes: number of classes
        """
        super(AIRX, self).__init__()
        block = AIRXBottleneck

        self.cardinality = cardinality
        self.baseWidth = baseWidth
        self.inplanes = 64

        self.head7x7 = head7x7
        if self.head7x7:
            self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)
            self.bn1 = nn.BatchNorm2d(64)
        else:
            self.conv1 = nn.Conv2d(3, 32, 3, 2, 1, bias=False)
            self.bn1 = nn.BatchNorm2d(32)
            self.conv2 = nn.Conv2d(32, 32, 3, 1, 1, bias=False)
            self.bn2 = nn.BatchNorm2d(32)
            self.conv3 = nn.Conv2d(32, 64, 3, 1, 1, bias=False)
            self.bn3 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], 2)
        self.layer3 = self._make_layer(block, 256, layers[2], 2)
        self.layer4 = self._make_layer(block, 512, layers[3], 2)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
github MaestroGraph / sparse-hyper / experiments / sparsity-mlp.py View on Github external
"""
        Convolutional NAS model.
        """
        c1, c2 = h1, h2

        one = Convolution(in_size=(1, 28, 28), out_channels=c1, k=arg.k[0], kernel_size=7,
                          gadditional=arg.gadditional[0], radditional=arg.radditional[1], rprop=arg.range[0],
                          min_sigma=arg.min_sigma, sigma_scale=arg.sigma_scale,
                          fix_values=arg.fix_values, has_bias=True)

        two = Convolution(in_size=(c1, 14, 14), out_channels=c2, k=arg.k[1], kernel_size=7,
                          gadditional=arg.gadditional[1], radditional=arg.radditional[1], rprop=arg.range[1],
                          min_sigma=arg.min_sigma, sigma_scale=arg.sigma_scale,
                          fix_values=arg.fix_values, has_bias=True)

        three = nn.Conv2d(c2, numcls, kernel_size=3, padding=1)

        model = nn.Sequential(
            one, nn.Sigmoid(), nn.MaxPool2d(2),
            two, nn.Sigmoid(), nn.MaxPool2d(2),
            three, nn.Sigmoid(), nn.MaxPool2d(2),
            util.Lambda(lambda x : x.mean(dim=-1).mean(dim=-1)), # global average pool
            nn.Softmax()
        )

    else:
        raise Exception('Method {} not recognized'.format(arg.method))

    if arg.cuda:
        model.cuda()

    return model, one, two, three
github lxy5513 / videopose / hrnet / lib / models / pose_resnet.py View on Github external
def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion,
                                  momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
github vishal1796 / pytorch-fast-neural-style / models.py View on Github external
def __init__(self):
        super(VGGFeature, self).__init__()
        self.conv1_1 = torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.conv1_2 = torch.nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.conv2_1 = torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.conv2_2 = torch.nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
        self.conv3_1 = torch.nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_2 = torch.nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_3 = torch.nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.conv4_1 = torch.nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_2 = torch.nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_3 = torch.nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_1 = torch.nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_2 = torch.nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_3 = torch.nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
github rohitgajawada / Where-are-they-looking-PyTorch / models / gazenet.py View on Github external
def __init__(self, opt):
        super(AlexSal, self).__init__()

        self.features = nn.Sequential(
            *list(torch.load(opt.placesmodelpath).features.children())[:-2]
        )
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
        self.conv6 = nn.Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1))
github maxjiang93 / ugscnn / baseline / exp3_2d3ds / models / u_net.py View on Github external
def __init__(self, in_channels, out_channels, dropout=False):
        super(_EncoderBlock, self).__init__()
        layers = [
            nn.Conv2d(in_channels, out_channels, kernel_size=3),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
        ]
        if dropout:
            layers.append(nn.Dropout())
        layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
        self.encode = nn.Sequential(*layers)