How to use the torch.from_numpy function in torch

To help you get started, we’ve selected a few torch examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github diux-dev / cluster / tf_numpy_benchmark / tf_numpy_benchmark.py View on Github external
def pytorch_add_newobject():
  """add vectors, put result into new memory"""

  import torch
  params0 = torch.from_numpy(create_array())
  params1 = torch.from_numpy(create_array())
  for i in range(args.num_iters):
    with timeit('pytorch_add_newobject'):
      params0+params1
github ucbdrive / spc / prediction_module / spn_flappybird / utils.py View on Github external
if torch.cuda.is_available():
            # if args.sample_with_collision:
            #     target['coll_batch'] = target['coll_batch'].cuda()
            # if args.sample_with_offroad:
            #     target['off_batch'] = target['off_batch'].cuda()
            if args.sample_with_pos:
                target['pos_batch'] = target['pos_batch'].cuda()
            if args.sample_with_angle:
                target['angle_batch'] = target['angle_batch'].cuda()
            if args.target_speed > 0:
                target['speed_batch'] = target['speed_batch'].cuda()
            if args.target_dist > 0:
                target['dist_batch'] = target['dist_batch'].cuda()

    weight = (args.gamma ** np.arange(args.pred_step)).reshape((1, args.pred_step, 1))
    weight = Variable(torch.from_numpy(weight).float().cuda()).repeat(batch_size, 1, 1)
    with torch.no_grad():
        output = net(imgs, actions, hidden=hidden, cell=cell, training=False, action_var=action_var)

    output['coll_prob'] = F.softmax(output['coll_prob'], -1)
    loss = -torch.round(output['coll_prob'][:, :, 0]) * output['value'].view(-1, args.pred_step) + torch.round(output['coll_prob'][:, :, 1]) * 2
    # loss = -(output['reward'].view(-1, args.pred_step, 1) * weight).sum(-1).sum(-1) - output['value'][:, -1, 0].contiguous().view(-1) * args.gamma ** args.pred_step	
    loss = (loss.view(-1, args.pred_step, 1) * weight).sum(-1).sum(-1)
    return loss
github naviocean / pseudo-3d-pytorch / models / i3dpt.py View on Github external
def load_conv3d(state_dict, name_pt, sess, name_tf, bias=False, bn=True):
    # Transfer convolution params
    conv_name_tf = os.path.join(name_tf, 'conv_3d')
    conv_params = get_conv_params(sess, conv_name_tf, bias=bias)
    if bias:
        conv_weights, kernel_shape, in_channels, out_channels, strides, padding, conv_bias = conv_params
    else:
        conv_weights, kernel_shape, in_channels, out_channels, strides, padding = conv_params

    conv_weights_rs = np.transpose(
        conv_weights, (4, 3, 0, 1,
                       2))  # to pt format (out_c, in_c, depth, height, width)
    state_dict[name_pt + '.conv3d.weight'] = torch.from_numpy(conv_weights_rs)
    if bias:
        state_dict[name_pt + '.conv3d.bias'] = torch.from_numpy(conv_bias)

    # Transfer batch norm params
    if bn:
        conv_tf_name = os.path.join(name_tf, 'batch_norm')
        moving_mean, moving_var, beta = get_bn_params(sess, conv_tf_name)

        out_planes = conv_weights_rs.shape[0]
        state_dict[name_pt + '.batch3d.weight'] = torch.ones(out_planes)
        state_dict[name_pt + '.batch3d.bias'] = torch.from_numpy(beta)
        state_dict[name_pt
                   + '.batch3d.running_mean'] = torch.from_numpy(moving_mean)
        state_dict[name_pt
                   + '.batch3d.running_var'] = torch.from_numpy(moving_var)
github tgeorgy / mgan / utils.py View on Github external
def next(self):
        if self.samples_remaining < self.batch_size:
            raise StopIteration
        # Init
        latent = np.random.randn(self.batch_size, self.n_latent)
        latent = torch.from_numpy(latent)

        # Sampling
        start_id = self.start_id
        end_id = self.start_id + self.batch_size
        batch_ids_ones = self.shuffle_ones[start_id:end_id]
        batch_ids_zeros = self.shuffle_zeros[start_id:end_id]
        input_G = self.img[batch_ids_zeros]
        input_D = self.img[batch_ids_ones]

        # Augmentation
        input_G = self.augment(input_G)
        input_D = self.augment(input_D)

        input_G = np.transpose(input_G, [0, 3, 1, 2])
        input_D = np.transpose(input_D, [0, 3, 1, 2])
        input_G = np.float32(input_G)/255*2-1
github snorkel-team / snorkel / snorkel / labeling / model / label_model.py View on Github external
Parameters
        ----------
        l2
            A float or np.array representing the per-source regularization
            strengths to use, by default 0

        Returns
        -------
        torch.Tensor
            L2 loss between learned mu and initial mu
        """
        if isinstance(l2, (int, float)):
            D = l2 * torch.eye(self.d)
        else:
            D = torch.diag(torch.from_numpy(l2)).type(torch.float32)
        D = D.to(self.config.device)
        # Note that mu is a matrix and this is the *Frobenius norm*
        return torch.norm(D @ (self.mu - self.mu_init)) ** 2
github mravanelli / SincNet / data_io.py View on Github external
for i in range(batch_size):
     
  # select a random sentence from the list  (joint distribution)
  [fs,signal]=scipy.io.wavfile.read(data_folder+wav_lst[snt_id_arr[i]])
  signal=signal.astype(float)/32768

  # accesing to a random chunk
  snt_len=signal.shape[0]
  snt_beg=np.random.randint(snt_len-wlen-1) #randint(0, snt_len-2*wlen-1)
  snt_end=snt_beg+wlen
  
  sig_batch[i,:]=signal[snt_beg:snt_end]*rand_amp_arr[i]
  lab_batch[i]=lab_dict[wav_lst[snt_id_arr[i]]]
  
 inp=torch.from_numpy(sig_batch).float().cuda().contiguous()  # Current Frame
 lab=torch.from_numpy(lab_batch).float().cuda().contiguous()
  
 return inp,lab
github mattmacy / torchbiomed / torchbiomed / datasets / luna16.py View on Github external
def __getitem_dev(self, index):
        series, bounds = self.imgs[index]
        (zs, ze), (ys, ye), (xs, xe) = bounds
        target = load_label(self.targets, series)
        target = target[zs:ze, ys:ye, xs:xe]
        target = torch.from_numpy(target.astype(np.int64))
        image = load_image(self.images, series)
        image = image[0, zs:ze, ys:ye, xs:xe]
        # optionally mask out lung volume from image
        if self.masks is not None:
            mask = load_mask(self.masks, series)
            mask = mask[zs:ze, ys:ye, xs:xe]
            image -= MIN_BOUND
            image = np.multiply(mask, image)
            image += MIN_BOUND
        image = image.reshape((1, ze-zs, ye-ys, xe-xs))
        img = image.astype(np.float32)

        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)
github lzrobots / LearningToCompare_ZSL / CUB_RN.py View on Github external
attribute = matcontent['att'].T 

    x = feature[trainval_loc] # train_features
    train_label = label[trainval_loc].astype(int)  # train_label
    att = attribute[train_label] # train attributes
    
    x_test = feature[test_unseen_loc]  # test_feature
    test_label = label[test_unseen_loc].astype(int) # test_label
    x_test_seen = feature[test_seen_loc]  #test_seen_feature
    test_label_seen = label[test_seen_loc].astype(int) # test_seen_label
    test_id = np.unique(test_label)   # test_id
    att_pro = attribute[test_id]      # test_attribute
    
    
    # train set
    train_features=torch.from_numpy(x)
    print(train_features.shape)

    train_label=torch.from_numpy(train_label).unsqueeze(1)
    print(train_label.shape)

    # attributes
    all_attributes=np.array(attribute)
    print(all_attributes.shape)
    
    attributes = torch.from_numpy(attribute)
    # test set

    test_features=torch.from_numpy(x_test)
    print(test_features.shape)

    test_label=torch.from_numpy(test_label).unsqueeze(1)
github wuhuikai / MSC / Baselines / BuildOrderPrediction / train_spatial.py View on Github external
######################### TEST ###################################
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)

    gpu_id = args.gpu_id
    with torch.cuda.device(gpu_id):
        model = model.cuda() if gpu_id >= 0 else model
    model.eval()

    env_return = env.step(reward=False, action=True)
    if env_return is not  None:
        (states_S, states_G, actions_gt), require_init = env_return
    with torch.cuda.device(gpu_id):
        states_S = torch.from_numpy(states_S).float()
        states_G = torch.from_numpy(states_G).float()
        actions_gt = torch.from_numpy(actions_gt).float()
        if gpu_id >= 0:
            states_S = states_S.cuda()
            states_G = states_G.cuda()
            actions_gt = actions_gt.cuda()

    while True:
        actions = model(Variable(states_S), Variable(states_G), require_init)
        ############################ PLOT ##########################################
        actions_np = np.squeeze(np.vstack([np.argmax(action.data.cpu().numpy(), axis=1) for action in actions]))
        actions_gt_np = np.squeeze(actions_gt.cpu().numpy())

        if require_init[-1] and len(action_gt_per_replay[-1]) > 0:
            action_pre_per_replay[-1] = np.ravel(np.hstack(action_pre_per_replay[-1]))
            action_gt_per_replay[-1] = np.ravel(np.hstack(action_gt_per_replay[-1]))
github MaestroGraph / sparse-hyper / iso.experiment.py View on Github external
if random.choice([True, False]):
            # graphs are isomorphic
            nodes = list(graph1.nodes())
            random.shuffle(nodes)

            am2 = nx.to_numpy_matrix(graph1, nodelist=nodes)

            classes[i] = 0
        else:
            # graphs are (probably not) isomorphic
            graph2 = nx.gnm_random_graph(n, m)
            am2 = nx.to_numpy_matrix(graph2)

            classes[i] = 1

        data[i, 0, :, :] = torch.from_numpy(am1)
        data[i, 1, :, :] = torch.from_numpy(am2)

    return data, classes