How to use the torch.load function in torch

To help you get started, we’ve selected a few torch examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github HazyResearch / learning-circuits / reconstruct_matrix.py View on Github external
def main():
    print('Initializing...')

    # TODO..
    parser = argparse.ArgumentParser('Butterfly matrix recovery')
    parser.add_argument('--method', type=str, choices=['none', 'butterfly', 'lowrank', 'sparse'], default='none', help='Compression method')
    parser.add_argument('--steps', type=int, default=25000, help='Number of training steps')
    args = parser.parse_args()

    state_dict = torch.load('model_optimizer.pth')['model']
    print('Loaded model')

    if args.method == 'none':
        print('Validating...')
        print(validate(state_dict))
        exit()

    for layer in range(4, 5):
        for block in range(2):
            for conv in range(1, 3):
                weight_name = f'layer{layer}.{block}.conv{conv}.weight'
                weight = state_dict[weight_name]
                print('Weight:', weight_name)
                for mat_id in range(weight[0,0].numel()):
                    mat_id_x = mat_id // weight[0,0,0].numel()
                    mat_id_y = mat_id % weight[0,0,0].numel()
github L1aoXingyu / faster_rcnn.pytorch / models / faster_rcnn_vgg16.py View on Github external
def decom_vgg16():
    # the 30th layer of features is relu of conv5_3
    if opt.caffe_pretrain:
        model = vgg16(pretrained=False)
        model.load_state_dict(torch.load(opt.caffe_pretrain_path))
    else:
        model = vgg16(not opt.caffe_pretrain)

    features = list(model.features)[:30]
    classifier = model.classifier

    classifier = list(classifier)
    del classifier[6]
    if not opt.use_drop:
        del classifier[5]
        del classifier[2]
    classifier = nn.Sequential(*classifier)

    # freeze top4 conv
    for layer in features[:10]:
        for p in layer.parameters():
github yuzeh / metagrok / metagrok / methods / learner.py View on Github external
def load_latest_policy(out_dir, policy):
  model_dir = os.path.join(out_dir, 'models')
  mkdir_p(model_dir)

  models = sorted(glob.glob('%s/*.pytorch' % model_dir))

  if models:
    policy.load_state_dict(torch.load(sorted(models)[-1]))
  else:
    torch.save(policy.state_dict(), '%s/%s.pytorch' % (model_dir, mk_iter_name(0)))
    models = sorted(glob.glob('%s/*.pytorch' % model_dir))

  policy.type(config.tt())

  if config.use_cuda():
    policy = policy.cuda()

  return models
github IBM / bLVNet-TAM / core / models / blvnet_tam_backbone.py View on Github external
def blvnet_tam_backbone(depth, alpha, beta, num_frames, blending_frames=3, input_channels=3,
                        imagenet_blnet_pretrained=True):
    layers = {
        50: [3, 4, 6, 3],
        101: [4, 8, 18, 3],
        152: [5, 12, 30, 3]
    }[depth]

    model = bLVNet_TAM_BACKBONE(Bottleneck, layers, alpha, beta, num_frames,
                                blending_frames=blending_frames, input_channels=input_channels)

    if imagenet_blnet_pretrained:
        checkpoint = torch.load(model_urls['blresnet{}'.format(depth)], map_location='cpu')
        print("loading weights from ImageNet-pretrained blnet, blresnet{}".format(depth),
              flush=True)
        # fixed parameter names in order to load the weights correctly
        state_d = OrderedDict()
        if input_channels != 3:  # flow
            print("Convert RGB model to Flow")
            for key, value in checkpoint['state_dict'].items():
                new_key = key.replace('module.', '')
                if "conv1.weight" in key:
                    o_c, in_c, k_h, k_w = value.shape
                else:
                    o_c, in_c, k_h, k_w = 0, 0, 0, 0
                if k_h == 7 and k_w == 7:
                    # average the weights and expand to all channels
                    new_shape = (o_c, input_channels, k_h, k_w)
                    new_value = value.mean(dim=1, keepdim=True).expand(new_shape).contiguous()
github jihanyang / AFN / partial / OfficeHome / HAFN / code / eval.py View on Github external
t_set = OfficeImage(t_root, t_label, data_transform)
assert len(t_set) == get_dataset_length(args.target + '_shared')

t_loader = torch.utils.data.DataLoader(t_set, batch_size=args.batch_size,
    shuffle=args.shuffle, num_workers=args.num_workers)

netG = ResBase50().cuda()
netF = ResClassifier(class_num=args.class_num, extract=False).cuda()
netG.eval()
netF.eval()

for epoch in range(args.epoch/2, args.epoch + 1):
    if epoch % 10 != 0:
        continue
    netG.load_state_dict(torch.load(os.path.join(args.snapshot, "OfficeHome_HAFN_" + args.task + "_netG_" + args.post + "." + args.repeat + "_" + str(epoch) + ".pth")))
    netF.load_state_dict(torch.load(os.path.join(args.snapshot, "OfficeHome_HAFN_" + args.task + "_netF_" + args.post + "." + args.repeat + "_" + str(epoch) + ".pth")))

    correct = 0
    tick = 0
    for (imgs, labels) in t_loader:
        tick += 1
        imgs = Variable(imgs.cuda())
        pred = netF(netG(imgs))
        pred = F.softmax(pred)
        pred = pred.data.cpu().numpy()
        pred = pred.argmax(axis=1)
        labels = labels.numpy()
        correct += np.equal(labels, pred).sum()

    correct = correct * 1.0 / len(t_set)
    print "Epoch {0}: {1}".format(epoch, correct)
    result.write("Epoch " + str(epoch) + ": " + str(correct) + "\n")
github amdegroot / ssd.pytorch / train.py View on Github external
if args.visdom:
        import visdom
        viz = visdom.Visdom()

    ssd_net = build_ssd('train', cfg['min_dim'], cfg['num_classes'])
    net = ssd_net

    if args.cuda:
        net = torch.nn.DataParallel(ssd_net)
        cudnn.benchmark = True

    if args.resume:
        print('Resuming training, loading {}...'.format(args.resume))
        ssd_net.load_weights(args.resume)
    else:
        vgg_weights = torch.load(args.save_folder + args.basenet)
        print('Loading base network...')
        ssd_net.vgg.load_state_dict(vgg_weights)

    if args.cuda:
        net = net.cuda()

    if not args.resume:
        print('Initializing weights...')
        # initialize newly added layers' weights with xavier method
        ssd_net.extras.apply(weights_init)
        ssd_net.loc.apply(weights_init)
        ssd_net.conf.apply(weights_init)

    optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
                          weight_decay=args.weight_decay)
    criterion = MultiBoxLoss(cfg['num_classes'], 0.5, True, 0, True, 3, 0.5,
github yottabytt / pytorch_mtl / mtl_learning.py View on Github external
def train(train_summ_batches, valid_summ_data, train_ent_batches, 
            np_embeddings, meta_data, num_epochs, 
            pt_reload=False, switch=1, print_every=1, 
            validate_every=1, learning_rate=0.005):

    ent_batches_len = 10
    hidden_size = 512

    summ_encoder = None
    ent_encoder = None
    decoder = None

    if pt_reload:
        summ_encoder = torch.load('reloads/summ_encoder.pt')
        ent_encoder = torch.load('reloads/ent_encoder.pt')
        decoder = torch.load('reloads/decoder.pt')
        print_msg('reloading of saved models done ..')
    else:
        summ_encoder = EncoderRNN(vocab_size, embedding_size, 
                                    hidden_size, np_embeddings)
        ent_encoder = EncoderRNN(vocab_size, embedding_size, 
                                    hidden_size, np_embeddings)
        decoder = AttnDecoderRNN(vocab_size, embedding_size, 
                                    hidden_size, np_embeddings)


    if USE_CUDA:
        summ_encoder = summ_encoder.cuda()
        ent_encoder = ent_encoder.cuda()
        decoder = decoder.cuda()
github MTMC-DeeCamp2018 / ReID-beyond_part_model / script / run.py View on Github external
model = Model(
        last_conv_stride=last_conv_stride,
        num_stripes=num_stripes,
        local_conv_out_channels=local_conv_out_channels
    )
    model_w = DataParallel(model)
    TMO([model])

    # preprocessing
    preprocessor = PreProcessIm(resize_h_w=resize_h_w, scale=scale_im,
                                im_mean=im_mean, im_std=im_std)

    # load model
    map_location = (lambda storage, loc: storage)
    sd = torch.load(model_weight_file, map_location=map_location)
    load_state_dict(model, sd['state_dicts'][0])
    print('Loaded model weight from {}'.format(model_weight_file))

    extractor = ExtractFeature(model_w, TVT)
    return preprocessor, extractor
github matteorr / rel_3d_pose / run_model.py View on Github external
def run_model(opt):

    # get misc file used for the specified data format
    misc = DatasetMisc(opt['dataset_type'])

    # class that takes care of plotting
    pose_plotter = PosePlotter(
                    pose_config['KEYPOINT_NAMES'],
                    pose_config['SKELETON_NAMES'],
                    pose_config['KEYPOINT_COLORS'],
                    pose_config['SKELETON_COLORS'])

    # load checkpoint file
    ckpt    = torch.load(opt['load'])
    stat_2d = ckpt['stat_2d']

    # load the pretrained model
    print("\n==================Model===================")
    print("Loading Pretrained Model:")
    print(" - Linear size: [{}]".format(opt['linear_size']))
    print(" - Num stages:  [{}]".format(opt['linear_size']))
    print("==========================================\n")

    pretrained_model = LinearModel(misc.NUM_KEYPOINTS_2D * 2,
                                   misc.NUM_KEYPOINTS_3D * 3,
                                   opt['linear_size'],
                                   opt['num_stage'],
                                   opt['dropout'],
                                   opt['predict_scale'],
                                   opt['scale_range'],
github huggingface / pytorch-pretrained-BigGAN / pytorch_pretrained_biggan / model.py View on Github external
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            logger.error("Wrong model name, should be a valid path to a folder containing "
                         "a {} file and a {} file or a model name in {}".format(
                         WEIGHTS_NAME, CONFIG_NAME, PRETRAINED_MODEL_ARCHIVE_MAP.keys()))
            raise

        logger.info("loading model {} from cache at {}".format(pretrained_model_name_or_path, resolved_model_file))

        # Load config
        config = BigGANConfig.from_json_file(resolved_config_file)
        logger.info("Model config {}".format(config))

        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        state_dict = torch.load(resolved_model_file, map_location='cpu' if not torch.cuda.is_available() else None)
        model.load_state_dict(state_dict, strict=False)
        return model