Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
np.linalg.norm(p_hat - dcsbm_P) ** 2
# heatmap(dcsbe.p_mat_, inner_hier_labels=labels)
# heatmap(dcsbm_P, inner_hier_labels=labels)
import seaborn as sns
plt.figure()
sns.scatterplot(
x=latent[:, 0], y=latent[:, 1], hue=dcsbe.vertex_assignments_, linewidth=0
)
#%%
from graspy.embed import LaplacianSpectralEmbed, AdjacencySpectralEmbed
plt.style.use("seaborn-white")
sns.set_palette("Set1")
plt.figure(figsize=(10, 10))
sns.set_context("talk", font_scale=1.5)
sns.scatterplot(x=latent[:, 0], y=latent[:, 1], hue=labels, linewidth=0)
plt.axis("square")
ase = AdjacencySpectralEmbed(n_components=2)
lse = LaplacianSpectralEmbed(n_components=2, form="R-DAD", regularizer=1)
ase_latent = ase.fit_transform(graph)
lse_latent = lse.fit_transform(graph)
plt.figure(figsize=(10, 10))
sns.scatterplot(x=ase_latent[:, 0], y=ase_latent[:, 1], hue=labels, linewidth=0)
plt.axis("square")
plt.figure(figsize=(10, 10))
sns.scatterplot(x=lse_latent[:, 0], y=lse_latent[:, 1], hue=labels, linewidth=0)
plt.axis("square")
def plot_comp_frag(self, fragility_data, hazard_intensity_vals,
fig_output_path='./component_fragilities'):
"""
Generates fragility plots of given component types, and
saves them in
"""
dsclrs = ["#2ecc71", "#3498db", "#feb24c", "#de2d26"]
grid_colr = '#B6B6B6'
sns.set_style('whitegrid')
sns.set_palette(dsclrs)
sns.set_context('paper')
if not os.path.exists(fig_output_path):
os.makedirs(fig_output_path)
fragility_df = copy.deepcopy(fragility_data)
fragility_df = fragility_df.query("damage_state!='DS0 None'")
ds_list = list(fragility_data.index.levels[1].values)
if 'DS0 None' in ds_list:
ds_list.remove('DS0 None')
frag_fig = plt.figure(figsize=(6.0, 3.2))
axis = frag_fig.add_subplot(111)
for dmg_state in ds_list:
scale = fragility_data.loc[(self.type, dmg_state), 'damage_median']
def setSeabornParams():
# Talk seems to be best choice for font size
sb.set_context("talk")
# use "cubehelix" colormap for printing; hls is used for SB
# sb.palplot(sb.color_palette("jet", 8))
sb.set_palette(sb.color_palette("jet", 8))
sb.set_palette("jet",8)
def set_style():
# This sets reasonable defaults for font size for
# a figure that will go in a paper
sns.set_context("paper")
# Set the font to be serif, rather than sans
sns.set(font='serif', font_scale=1.5)
sns.set_palette('muted')
# Make the background white, and specify the
# specific font family
sns.set_style("whitegrid", {
"font.family": "serif",
"font.serif": ["Times", "Palatino", "serif"]
})
def plot_progress(self):
try:
sns.set_palette('Set2')
sns.set_style("darkgrid", {"axes.facecolor": ".95"})
except:
pass
self.logger.debug('plotting...')
plt.figure(figsize=(15,10))
plt.subplot(211)
plt.plot(self.trials.losses(), '.', markersize=12)
plt.title('Per-Iteration Outer Loss', fontsize=16)
plt.ylabel('Outer loss function value')
if self.outer_loss_function in ['logloss']:
plt.yscale('log')
xticks = [int(i) for i in np.linspace(plt.xlim()[0], plt.xlim()[1], min(len(self.trials.losses()), 11))]
plt.xticks(xticks, xticks)
def setupPalette(count, pal=None):
# See http://xkcd.com/color/rgb/. These were chosen to be different "enough".
colors = ['grass green', 'canary yellow', 'dirty pink', 'azure', 'tangerine', 'strawberry',
'yellowish green', 'gold', 'sea blue', 'lavender', 'orange brown', 'turquoise',
'royal blue', 'cranberry', 'pea green', 'vermillion', 'sandy yellow', 'greyish brown',
'magenta', 'silver', 'ivory', 'carolina blue', 'very light brown']
palette = sns.color_palette(palette=pal, n_colors=count) if pal else sns.xkcd_palette(colors)
sns.set_palette(palette, n_colors=count)
http://www-pcmdi.llnl.gov/about/staff/Taylor/CV/Taylor_diagram_primer.htm
"""
from __future__ import division, print_function
from builtins import map, object, zip
import matplotlib.pyplot as PLT
import numpy as NP
import seaborn as sns
from past.utils import old_div
__version__ = "Time-stamp: <2012-02-17 20:59:35 ycopin>"
__author__ = "Yannick Copin "
colors = ['#DA70D6', '#228B22', '#FA8072', '#FF1493']
sns.set_palette(sns.color_palette(colors))
class TaylorDiagram(object):
"""Taylor diagram: plot model standard deviation and correlation
to reference (data) sample in a single-quadrant polar plot, with
r=stddev and theta=arccos(correlation).
"""
def __init__(self, refstd, scale=1.5, fig=None, rect=111, label='_'):
"""Set up Taylor diagram axes, i.e. single quadrant polar
plot, using mpl_toolkits.axisartist.floating_axes. refstd is
the reference standard deviation to be compared to.
"""
from matplotlib.projections import PolarAxes
import mpl_toolkits.axisartist.floating_axes as FA
else:
self.__dim_control_input = self.__time_series_control_input.shape[1]
# set the layout of the graphs and settings
self.__num_plot_variables = self.__dim_state+self.__dim_control_input+1
self.__num_plot_x = int(np.floor(self.__num_plot_variables/np.sqrt(self.__num_plot_variables)))
self.__num_plot_y = int(np.ceil(self.__num_plot_variables/self.__num_plot_x))
# adjust figure size
self.__figure_scale = 1
self.__font_scale = 1
self.__space_scale = 1
# set format of seaborn
sns.set_style("ticks")
sns.set_palette("deep")
sns.set_context("paper")
sns.mpl.pyplot.rc('mathtext', **{'rm':'serif', 'it':'serif:itelic', 'bf':'serif:bold', 'fontset':'cm'})
sns.mpl.pyplot.rcParams['xtick.direction'] = 'in'
sns.mpl.pyplot.rcParams['ytick.direction'] = 'in'
sns.mpl.pyplot.rcParams['pdf.fonttype'] = 42
sns.mpl.pyplot.rcParams['ps.fonttype'] = 42
# set the width of lines and axes
sns.mpl.pyplot.rcParams['lines.linewidth'] = 1
sns.mpl.pyplot.rcParams['axes.linewidth'] = 0.5
import json
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import seaborn as sns
sns.set_style('whitegrid')
colors = ['greyish', 'faded blue', "faded green"]
sns.set_palette(sns.xkcd_palette(colors))
def load_xy(path):
with open(path, 'rb') as f:
data = json.load(f)
data = np.asarray(data)
return data[:, 1:]
def plot_data(paths, output_path, n_rows=1, n_cols=3, smooth_len=5, lw=3):
figure(num=0, figsize=(20, 5), dpi=100, facecolor='w', edgecolor='k')
for i_subplot, env_name in enumerate(paths):
ax = plt.subplot(n_rows, n_cols, i_subplot + 1)
plt.title(env_name)
for model_name in paths[env_name]:
def init_plot_style():
"""
Initialize plot style for RankEval visualization utilities.
Returns
-------
"""
plt.style.use("seaborn-notebook")
sns.set_palette("deep")