How to use the seaborn.regplot function in seaborn

To help you get started, we’ve selected a few seaborn examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github machinelearningmindset / machine-learning-course / code / overview / linear_regression / linear_regression.py View on Github external
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets, linear_model
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

# Create a data set for analysis
x, y = make_regression(n_samples=500, n_features = 1, noise=25, random_state=0)

# Split the data set into testing and training data
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0)

# Plot the data
sns.set_style("darkgrid")
sns.regplot(x_test, y_test, fit_reg=False)

# Remove ticks from the plot
plt.xticks([])
plt.yticks([])

plt.tight_layout()
plt.show()
github ComparativeGenomicsToolkit / Comparative-Annotation-Toolkit / cat / plots.py View on Github external
'Original introns',
                            'Intron annotation support',
                            'Intron RNA support',
                            'transMap alignment goodness',
                            'Alignment goodness']
            fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2)
            for ax in [ax1, ax2, ax3, ax4]: 
                ax.set_xlim(0, 100)
                ax.set_ylim(0, 100)
            
            do_kdeplot(data['transMap original introns'], data['Original introns'], ax1, n_levels=25, bw=2)
            sns.regplot(x=data['transMap original introns'], y=data['Original introns'], ax=ax1,
                        color='#A9B36F', scatter_kws={"s": 3, 'alpha': 0.7, 'rasterized': True}, fit_reg=False)
            do_kdeplot(data['transMap intron annotation support'], data['Intron annotation support'], ax2,
                       n_levels=25, bw=2)
            sns.regplot(x=data['transMap intron annotation support'], y=data['Intron annotation support'], ax=ax2,
                        color='#A9B36F', scatter_kws={"s": 3, 'alpha': 0.7, 'rasterized': True}, fit_reg=False)          
            do_kdeplot(data['transMap intron RNA support'], data['Intron RNA support'], ax3, n_levels=25, bw=2)
            sns.regplot(x=data['transMap intron RNA support'], y=data['Intron RNA support'], ax=ax3,
                        color='#A9B36F', scatter_kws={"s": 3, 'alpha': 0.7, 'rasterized': True}, fit_reg=False)
            
            do_kdeplot(data['transMap alignment goodness'], data['Alignment goodness'], ax4, n_levels=20, bw=1)
            sns.regplot(x=data['transMap alignment goodness'], y=data['Alignment goodness'], ax=ax4,
                        color='#A9B36F', scatter_kws={"s": 3, 'alpha': 0.7, 'rasterized': True}, fit_reg=False)
            

            fig.suptitle('AUGUSTUS metric improvements for {:,} transcripts in {}.\n'
                         '{:,} transMap transcripts were chosen.'.format(len(data), genome, unchanged))
            
            for ax in [ax1, ax2, ax3, ax4]:
                ax.set(adjustable='box-forced', aspect='equal')
            fig.subplots_adjust(hspace=0.3)
github wdecoster / NanoPlot / nanoplotter / timeplots.py View on Github external
def cumulative_yield(dfs, path, figformat, title, color):
    cum_yield_gb = Plot(path=path + "CumulativeYieldPlot_Gigabases." + figformat,
                        title="Cumulative yield")
    s = dfs.loc[:, "lengths"].cumsum().resample('1T').max() / 1e9
    ax = sns.regplot(x=s.index.total_seconds() / 3600,
                     y=s,
                     x_ci=None,
                     fit_reg=False,
                     color=color,
                     scatter_kws={"s": 3})
    ax.set(xlabel='Run time (hours)',
           ylabel='Cumulative yield in gigabase',
           title=title or cum_yield_gb.title)
    cum_yield_gb.fig = ax.get_figure()
    cum_yield_gb.save(format=figformat)
    plt.close("all")

    cum_yield_reads = Plot(path=path + "CumulativeYieldPlot_NumberOfReads." + figformat,
                           title="Cumulative yield")
    s = dfs.loc[:, "lengths"].resample('10T').count().cumsum()
    ax = sns.regplot(x=s.index.total_seconds() / 3600,
github autonomio / astetik / astetik / plots / regs.py View on Github external
y_limit :: int or list with two ints

    outliers :: Remove outliers using either 'zscore' or 'iqr'

    '''

    # HEADER STARTS >>>
    palette = _header(palette, style, n_colors=1, dpi=dpi)  # NOTE: y exception
    # <<< HEADER ENDS

    # # # # # # PLOT CODE STARTS # # # # # #
    p, ax = plt.subplots(figsize=(params()['fig_width'],
                                  params()['fig_height']))

    sns.regplot(data=data,
                x=x, y=y,
                fit_reg=fit_reg,
                scatter=draw_scatter,
                color=palette[0],
                marker=marker,
                logistic=logres)
    # # # # # # PLOT CODE ENDS # # # # # #

    # SCALING AND LIMITS STARTS >>>
    if x_scale != 'linear' or y_scale != 'linear':
        _scaler(p, x_scale, y_scale)

    if x_limit != None or y_limit != None:
        _limiter(data=data, x=x, y=y, x_limit=x_limit, y_limit=y_limit)

    # START OF TITLES >>>
github ankane / quirk / quirk / regressor.py View on Github external
def _plot_number(self, name):
        data = self._train_features_df.dropna(subset=[name])
        self._plot(sns.distplot(data[name]))
        self._plot(sns.regplot(x=name, y=self._target_col,
                               data=data))
github DanielSola / mimic-iii-project / mortality_labels_prediction.py View on Github external
### AUROC PLOTS

n_clases = 3
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    Y_test = np.array(Y_test)
    Y_pred = np.array(Y_pred)
    fpr[i], tpr[i], _ = roc_curve(Y_test[:, i], Y_pred[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])

import seaborn as sns

sns.regplot(x=fpr[0], y = tpr[0])


import seaborn as sns
sns.set('talk', 'whitegrid', 'dark', font_scale=0.70, font='Ricty',
        rc={"lines.linewidth": 2, 'grid.linestyle': '--'})

def plot_roc_auroc_curves(tpr, fpr, roc_auc, title):
    plt.figure()
    plt.plot(fpr[1], tpr[1], color='green',
         lw=lw, label='ROC Curve (AUC = %0.2f)' % roc_auc[1])
    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title(title)
github samplchallenges / SAMPL6 / physical_properties / pKa / analysis / analysis_of_typeIII_predictions / typeIII_analysis.py View on Github external
data = data[[x, y]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 2)
    max_limit = np.floor(max(data.max()) + 2)
    axes_limits = np.array([min_limit, max_limit])

    if kind == 'joint':
        grid = sns.jointplot(x=x, y=y, data=data,
                             kind='reg', joint_kws={'ci': None}, stat_func=None,
                             xlim=axes_limits, ylim=axes_limits, color=color)
        ax = grid.ax_joint
        grid.fig.subplots_adjust(top=0.95)
        grid.fig.suptitle(title)
    elif kind == 'reg':
        ax = sns.regplot(x=x, y=y, data=data, color=color, ax=ax)
        ax.set_title(title)

    # Add diagonal line.
    ax.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 pKa error.
    palette = sns.color_palette('BuGn_r')
    ax.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    ax.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3])
github GeoscienceAustralia / tcrm / PlotInterface / figures.py View on Github external
def subplot(self, axes, subfigure):
        xdata, ydata, xlabel, ylabel, title, transform = subfigure
        color = axes._get_lines.color_cycle #pylint:disable=W0212

        xdata, ydata = self.prepareData(xdata, ydata, transform)
        k = next(color)
        scatter_kws = {'color':k,
                       'alpha':0.5}
        sns.regplot(xdata, ydata, ax=axes, scatter_kws=scatter_kws)

        self.formatAxes(axes, xdata, ydata)
        axes.set_xlabel(xlabel)
        axes.set_ylabel(ylabel)
        axes.set_title(title)

        legend = axes.legend(loc=2)
        legend.get_frame().set_alpha(0.5)
github ekolik / -Python-Analysis_of_wine_quality / data_analysis.py View on Github external
high = wine_set[wine_set['quality'] > 7]

    print('association between wine`s density and residual sugar for wines \nof `low` quality')
    print(scipy.stats.pearsonr(low['density'], low["residual_sugar"]))
    print('\nof `medium` quality')
    print(scipy.stats.pearsonr(medium['density'], medium["residual_sugar"]))
    print('\nof `high` quality')
    print(scipy.stats.pearsonr(high['density'], high["residual_sugar"]))

    scat0 = seaborn.regplot(x="density", y="residual_sugar", fit_reg=True, data=low)
    plt.xlabel("Density of wine")
    plt.ylabel("Residual sugar in wine, gram")
    plt.title("Association between wine's density and residual sugar for wines of `low` quality")
    plt.show()

    scat0 = seaborn.regplot(x="density", y="residual_sugar", fit_reg=True, data=medium)
    plt.xlabel("Density of wine")
    plt.ylabel("Residual sugar in wine, gram")
    plt.title("Association between wine's density and residual sugar for wines of `medium` quality")
    plt.show()

    scat0 = seaborn.regplot(x="density", y="residual_sugar", fit_reg=True, data=high)
    plt.xlabel("Density of wine")
    plt.ylabel("Residual sugar in wine, gram")
    plt.title("Association between wine's density and residual sugar for wines of `high` quality")
    plt.show()
github eyadsibai / brute-force-plotter / brute_force_plotter.py View on Github external
def scatter_plot(data, col1, col2, file_name=None):
    sns.regplot(x=col1, y=col2, data=data, fit_reg=False)
    sns.despine(left=True)