Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
plt.show();
#%% Histogram
data.mpg.plot(kind='hist')
data.wt.plot(kind='hist', bins=3)
data.Weight.value_counts().plot.bar() #same, order of category is changed
plt.hist(data.wt, bins = 5, stacked=True, normed=True, color='green' )
color=['red','green','blue','purple','black']
import seaborn as sns
sns.distplot(data.wt);
sns.distplot(data.wt, kde=False, rug=True); #no curve, rug lines at bottom
sns.distplot(data.mpg, bins=20, kde=False, rug=True); #more bins, no curve
sns.distplot(data.mpg, hist=False, rug=True); #without density
sns.jointplot(x="wt", y="mpg", data=data);
sns.jointplot(x="wt", y="mpg", data=data, kind="kde");
sns.jointplot(x="x", y="y", data=df, );
#Links:https://seaborn.pydata.org/tutorial/distributions.html
f, ax = plt.subplots(figsize=(6, 6))
sns.kdeplot(data.wt, data.mpg, ax=ax)
sns.rugplot(data.wt, color="g", ax=ax)
sns.rugplot(data.mpg, vertical=True, ax=ax);
#%% Pair Plot
sns.pairplot(data[['wt','mpg', 'hp', 'qsec']]);
#%%%
#%%%
#%%%outliers
#In statistics, an outlier is an observation point that is distant from other observations.
sns.boxplot(x=data['mpg'])
#The Z-score is the signed number of standard deviations by which the value of an observation or data point is above the mean value of what is being observed or measured
#Links: https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-404d16608dba
def Axis_JointPlot(data, x, y, kind="scatter"):
sns.set(style="white", color_codes=True)
g = sns.jointplot(x, y, data, kind)
d = mpld3.fig_to_dict(g.fig)
return d
#Pair
sns.pairplot(mtcars[['mpg','wt']])
sns.pairplot(mtcars)
#Facet
grid = sns.FacetGrid(mtcars, row='gear', col='cyl', margin_titles=True)
grid.map(plt.hist, 'mpg', bins=np.linspace(0,35,5))
#Factor Plot
g= sns.factorplot('cyl', 'wt', hue='am', data=mtcars, kind='box')
g.set_axis_labels('Mileage', 'Weight')
#Joint Distributions
sns.jointplot('wt', 'mpg', data=mtcars)
sns.jointplot('wt', 'mpg', data=mtcars, kind='reg')
#Bar Plots
g = sns.factorplot(x='mpg', y=None, data=mtcars, aspect=1, kind='count', color='blue')
g.set_xticklabels(step=5)
#with cat colomn
g = sns.factorplot(x='cyl', y=None, data=mtcars, aspect=1, kind='count', color='blue')
#g.set_xticklabels(step=1)# not reqd here
Kind of plot to draw, by default 'scatter'
ouput_file : str
Output file name for the image including extension (.jpg, .png, etc.)
"""
# NOTE: Ignore the deprecation warning for showing the R^2 statistic until Seaborn reimplements it
import warnings
from scipy import stats
warnings.simplefilter("ignore", UserWarning)
sns.set(style="ticks", color_codes=True)
color = kwargs.pop("color", "crimson")
g = sns.jointplot(x=x, y=y, data=df, kind=kind, color=color, **kwargs).annotate(
stats.pearsonr
)
if output_file: # pragma: no cover
g.savefig(os.path.join(IMAGE_DIR, output_file))
return g
def jointplot(vals1, vals2, out_pdf):
plt.figure()
g = sns.jointplot(vals1, vals2, alpha=0.8, color='black')
ax = g.ax_joint
xmin, xmax = scatter_lims(vals1)
ymin, ymax = scatter_lims(vals2)
ax.plot([xmin, xmax], [ymin, ymax], linestyle='--', color='black')
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.grid(True, linestyle=':')
plt.tight_layout(w_pad=0, h_pad=0)
plt.savefig(out_pdf)
plt.close()
#################################################################
# plot filter influence
#################################################################
sb_blue = sns.color_palette('deep')[0]
sns.set(style='ticks', font_scale=1)
ymin, ymax = coord_range(filter_infl, buf_pct=0.1)
if options.motifs_file:
nonzero = np.array(df_motifs.ic > 0)
xmin, xmax = coord_range(df_motifs.ic.loc[nonzero])
plt.figure()
if not options.color_filters:
g = sns.jointplot(x=np.array(df_motifs.ic.loc[nonzero]), y=filter_infl[nonzero], color='black', stat_func=None, joint_kws={'alpha':0.8})
else:
g = sns.jointplot(x=np.array(df_motifs.ic.loc[nonzero]), y=filter_infl[nonzero], color='black', stat_func=None, joint_kws={'alpha':0.1})
ax = g.ax_joint
unannotated = np.logical_and(nonzero, np.array(df_motifs.annotation == '.'))
ax.scatter(np.array(df_motifs.ic.loc[unannotated]), filter_infl[unannotated], c='#ee8b00', alpha=0.5, linewidths=0)
annotated = np.array(df_motifs.annotation != '.')
ax.scatter(np.array(df_motifs.ic.loc[annotated]), filter_infl[annotated], c='#1ba100', alpha=0.5, linewidths=0)
ax.set_xlim(xmin, xmax)
ax.set_xlabel('Information content')
ax.xaxis.label.set_fontsize(18)
map(lambda xl: xl.set_fontsize(15), ax.get_xticklabels())
ax.set_ylim(ymin, ymax)
ax.set_ylabel('Influence')
ax.yaxis.label.set_fontsize(18)
def bvJointPlot(u, v, corr_stat="kendalltau", vs=None, **kwargs):
stat_funcs = {"kendalltau": kendalltau,
"spearmanr": spearmanr,
"pearsonr": pearsonr}
outfile = kwargs.pop("savefig", None)
joint_plt = sns.jointplot(x=u, y=v, stat_func=stat_funcs[corr_stat], zorder=2, label="resampled", **kwargs)
vsData = vs
if vsData is not None:
joint_plt.x, joint_plt.y = vsData[0], vsData[1]
sb_color = sns.xkcd_palette(["faded green"])[0]
joint_plt.plot_joint(plt.scatter, s=4, alpha=0.7, c=sb_color, marker='o', edgecolors='face', label="original", zorder=1)
plt.legend()
if outfile:
joint_plt.savefig(outfile)
return joint_plt
params = yml.read(config_file)
abunds = [txt.read_abundances(path_sim, sim_id=sim_id) for sim_id in params['sim_ids']]
colors = putils.get_colors(params)
# Make plot
for ii, (ab, color) in enumerate(zip(abunds, colors)):
marg_kws = {
'norm_hist': True,
'hist_kws': {'weights': ab.Survivors.values}
}
if ii == 0:
fig = sns.jointplot('[Fe/H]', params['ab'], data=ab, stat_func=None,
color=color, marginal_kws=marg_kws)
else:
fig = putils.joint_overplot('[Fe/H]', params['ab'], data=ab,
fig=fig, color=color, marg_kws=marg_kws)
# Make legend
p = putils.get_path_collections(fig)
leg_args = putils.get_leg_args(params)
leg = fig.ax_joint.legend(p, params['labels'], **leg_args)
fout = join(path_out, os.path.splitext(os.path.basename(config_file))[0] + '.pdf')
plt.savefig(fout)
print(f'Wrote: {fout}')
cfg = cfg_io.read_plot_config(join(path_config, fin))
colors = utils.get_colors(cfg)
abund = cfg['General']['abundance']
labels = cfg['General']['labels']
# Read in simulation results
sims = []
for sim_id in cfg['General']['sim_ids']:
sims.append(txt_io.load_dataframe(path_output, sim_id))
# Make plot
for i, (sim, color) in enumerate(zip(sims, colors)):
marg_kws = dict(norm_hist=True,
hist_kws=dict(weights=sim.Survivors.values))
if i == 0:
fig = sns.jointplot('[Fe/H]', abund, data=sim, stat_func=None,
color=color, marginal_kws=marg_kws)
else:
fig = utils.joint_overplot('[Fe/H]', abund, df=sim, fig=fig,
color=color, marg_kws=marg_kws)
# Make legend
p = utils.get_path_collections(fig)
leg_args = utils.get_leg_args(cfg)
leg = fig.ax_joint.legend(p, labels, **leg_args)
# Save plot
fout = ''.join((os.path.splitext(fin)[0], '.pdf'))
plt.savefig(join(path_plots, fout))
u = (t + (19 * 60 * 60)) % (24 * 60 * 60)
j = bisect.bisect(sched_trips[key], u)
if j < len(sched_trips[key]):
u1 = sched_trips[key][j]
else:
u1 = 24 * 60 * 60 + sched_trips[key][0]
sched_wait_time = u1 - u
if max(sched_wait_time, real_wait_time) < MAX:
xs.append(sched_wait_time / 60.)
ys.append(real_wait_time / 60.)
if sched_wait_time < MAX:
ys_by_x[int(sched_wait_time / 60.0)].append(real_wait_time / 60.)
seaborn.jointplot(numpy.array(xs), numpy.array(ys), kind='hex')
pyplot.savefig('wait_time_real_vs_sched_joint.png')
pyplot.clf()
percs = [50, 60, 70, 80, 90]
results = [[] for p in percs]
for x, ys in enumerate(ys_by_x):
print x, len(ys)
ps = numpy.percentile(ys, percs)
for i, y in enumerate(ps):
results[i].append(y)
for i, ys in enumerate(results):
pyplot.plot(range(len(ys)), ys, label='%d percentile' % percs[i])
pyplot.ylim([0, 60])
pyplot.title('How long do you have to wait given how much schedule predicts')
pyplot.xlabel('Scheduled waiting time (min)')