Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
import seaborn as sns
directory = "plots"
try:
os.makedirs(directory)
except OSError as e:
if e.errno != errno.EEXIST:
raise
if density:
densities = []
for f in glob.glob("/data/draizene/molmimic/atom_densities/*_density.txt"):
with open(f) as f_:
densities.append(float(f_.read().rstrip()))
sns.distplot(densities, hist=False, axlabel="Densities")
plt.savefig(os.path.join(directory, "densities.pdf"))
if collisions:
collision_data = pd.DataFrame()
for grid_size in xrange(25, 255, 5):
grid_size /= 100.
with open("/data/draizene/molmimic/atom_collisions/{}.txt".format(grid_size), "w") as out:
for f in glob.glob("/data/draizene/molmimic/atom_collisions/*_collisions_{}.tsv".format(grid_size)):
with open(f) as f_:
for line in f_:
print >> out, line.rstrip().split("\t")[-1]
print grid_size
collision_data = pd.DataFrame()
for grid_size in xrange(25, 255, 5):
grid_size /= 100.
# category_column - column name in dataframe holding class labels
# graph_title - title to give to the graph plot
# Plot:
# Using multiple Histograms
# Compare across the distributions easily
fig = plt.figure(figsize=(6, 4))
title = fig.suptitle(attribute + " - " + category_column, fontsize=14)
fig.subplots_adjust(top=0.85, wspace=0.3)
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel(attribute)
ax.set_ylabel("Frequency")
g = sns.FacetGrid(dataf, hue=category_column)
g.map(sns.distplot, attribute, kde=False, bins=15, ax=ax)
ax.legend(title=category_column)
plt.close(2)
plt.show()
def plot_pval_hist(pvals, hist_bins=1e2, show_plot=True):
"""Plot a simple density histogram of P-values.
Input arguments:
pvals - The visualized P-values.
hist_bins - Number of histogram bins.
"""
# Keep empty space at minimum.
sns.set_style('darkgrid')
fig = plt.figure(figsize=(6, 4))
plt.subplots_adjust(top=0.925, bottom=0.125, left=0.105, right=0.950)
"""Plot the p-value density histogram for the whole data range."""
ax1 = fig.add_subplot(111)
sns.distplot(pvals, bins=hist_bins, rug=True, kde=False)
"""P-values are in the range [0, 1] so limit the drawing area
accordingly. Label the axes etc."""
ax1.set_xlim([-0.05, 1.05])
ax1.set_xlabel('P-value')
ax1.set_ylabel('Density')
if (show_plot):
plt.show()
return fig
def plot_filter_densities(densities, filename=None):
sns.set(font_scale=1.3)
fig, ax = plt.subplots()
sns.distplot(densities, kde=False, ax=ax)
ax.set_xlabel('Activation')
if filename:
fig.savefig(filename)
plt.close()
for phone in textgrid.tiers[0]: # tier 0 is the phones
index += 1
phone_durations.loc[index] = [phone.text, phone.duration()]
print('') # new line
phone_durations = phone_durations.loc[:index] # inclusive indexing in pandas
phone_counts = phone_durations['phone'].value_counts()
phone_duration_means = phone_durations.groupby('phone').mean()
just_phones = phone_durations[~phone_durations.phone.isin(['_','__'])]
phone_duration_total_mean = just_phones.duration.mean()
phone_duration_total_median = just_phones.duration.median()
#%% plot
fig = plt.figure()
sns.set(color_codes=False, style="white", context='paper')
ax = sns.distplot(just_phones.duration)
kde_x, kde_y = ax.get_lines()[0].get_data()
phone_duration_total_kde = kde_x[np.argmax(kde_y)]
plt.close(fig)
# ax.axvline(phone_duration_total_mean, c='C1', lw=2, alpha=.7, label='mean')
# ax.axvline(phone_duration_total_median, c='C2', lw=2, alpha=.7, label='median')
# ax.axvline(phone_duration_total_kde, c='C4', lw=2, alpha=.7, label='kde')
# ax.legend()
# plt.title('Duration histogram for phones in {} \n mean = {} ms, median = {} ms, kde = {} ms'.format(
# database, int(phone_duration_total_mean*1000), int(phone_duration_total_median*1000),
# int(phone_duration_total_kde*1000)))
# plt.xlabel('Duration')
# plt.ylabel('Density')
#
dataset = AudioDataset('data/', 'data/public_youtube700_val.csv', labels)
loader = DataLoader(dataset, batch_size=32, collate_fn=collate_audio)
x_lengths = []
y_lengths = []
for _, _, xn, yn in tqdm(loader):
x_lengths.extend(list(xn.numpy()))
y_lengths.extend(list(yn.numpy()))
import seaborn as sns
import matplotlib.pyplot as plt
plt.title('x lengths')
sns.distplot(x_lengths)
plt.show()
plt.title('y lengths')
sns.distplot(y_lengths)
plt.show()
def plot_density_mnist(x_inliers, x_outliers, ens_size, prefix, epoch=0):
in_entropy, in_variance = x_inliers
out_entropy, out_variance = x_outliers
f, axes = plt.subplots(2, 2, figsize=(22, 16))
plt.suptitle('{} models MNIST'.format(ens_size))
plt.subplots_adjust(top=0.85)
sns.distplot(in_entropy, hist=False, label='MNIST', color='m', ax=axes[0,0])
sns.distplot(out_entropy, hist=False, label='notMNIST', ax=axes[0,0])
axes[0, 0].set_xlabel('Entropy')
axes[0, 0].grid(True)
sns.distplot(in_variance, hist=False, label='MNIST', color='m', ax=axes[0,1])
sns.distplot(out_variance, hist=False, label='notMNIST', ax=axes[0,1])
axes[0, 1].set_xlabel('Variance')
axes[0, 1].grid(True)
sns.distplot(out_entropy, hist=True, color='b', ax=axes[1, 0])
axes[1, 0].set_xlabel('Entropy')
axes[1, 0].set_title('notMNIST entropy')
axes[1, 0].grid(True)
sns.distplot(out_variance, hist=True, color='b', ax=axes[1, 1])
axes[1, 1].set_xlabel('Variance')
axes[1, 1].set_title('notMNIST variance')
def pdf_accuracy_over_throttle(self, throttle=200, save_path=None, show=True):
if throttle not in self.throttles:
raise Exception(f"throttle {throttle} is not available")
fig, axis = self.initialize_figure((1, 1), (8, 6))
classifiers = self.data.df.env_CLASSIFIER.unique()
for classifier in classifiers:
sub_df = self.data.df.loc[(self.data.df.env_CLASSIFIER == classifier) &
(self.data.df.env_THROTTLE == throttle)]
sns.distplot(sub_df.metric_best_validation_accuracy,
hist=False,
norm_hist=True,
label=classifier)
axis.set_title("PDF of {} classification accuracy: {} training samples ({} trials across {} seeds)".format(self.data.dataset_name,
throttle,
sub_df.shape[0],
self.data.num_seeds))
if show:
plt.show()
if save_path:
self.save_figure(fig, save_path)
if np.all(GR<1.2):
converged = True
try:
#Plot output
import seaborn as sns
from matplotlib import pyplot as plt
total_iterations = len(old_samples[0])
burnin = total_iterations/2
samples = np.concatenate(tuple([old_samples[i][int(burnin):, :] for i in range(nchains)]))
ndims = len(sampled_params_list)
colors = sns.color_palette(n_colors=ndims)
for dim in range(ndims):
fig = plt.figure()
sns.distplot(samples[:, dim], color=colors[dim], norm_hist=True)
fig.savefig('PyDREAM_necro5720_smallest_dimension_'+str(dim))
except ImportError:
pass
else:
run_kwargs = {'parameters':sampled_params_list, 'likelihood':likelihood, 'niterations':niterations, 'nchains':nchains, \
'multitry':False, 'gamma_levels':4, 'adapt_gamma':True, 'history_thin':1, 'model_name':'necro_smallest_dreamzs5720_5chain', 'verbose':False}
if T == np.mean:
description = " of the mean"
elif T == np.max:
description = " of the maximum"
elif T == np.min:
description = " of the minimum"
elif T == np.median:
description = " of the median"
else:
description = ""
plt.figure(figsize=figsize)
ax = plt.subplot()
ax.axvline(T_actual)
sns.distplot(T_sim, kde=False, ax=ax)
ax.set(title='Posterior predictive' + description, xlabel='T(x)', ylabel='Frequency');
plt.show()