How to use the rpy2.robjects.numpy2ri.activate function in rpy2

To help you get started, we’ve selected a few rpy2 examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github d909b / perfect_match / perfect_match / models / baselines / psm.py View on Github external
def _build(self, **kwargs):
        from rpy2.robjects import numpy2ri, pandas2ri
        match_it = self.install_matchit()

        self.num_treatments = kwargs["num_treatments"]
        self.batch_size = kwargs["batch_size"]
        self.match_it = match_it
        numpy2ri.activate()
        pandas2ri.activate()

        return super(PSM, self)._build(**kwargs)
github selective-inference / Python-software / selectinf / learning / Rfitters.py View on Github external
def fitfn(t):
            rpy2.robjects.numpy2ri.activate()
            fitfn_r = rpy.r('fitfn_%s' % uuid_label)
            val = np.asarray(fitfn_r(t))
            rpy2.robjects.numpy2ri.deactivate()
            return val
        fitfns.append(fitfn)
github theislab / anndata2ri / anndata2ri / scipy2ri / conv.py View on Github external
def activate():
    """Activate!"""
    global original_converter

    if original_converter is not None:
        return

    original_converter = conversion.converter

    numpy2ri.activate()
    new_converter = conversion.Converter("scipy conversion", template=conversion.converter)
    numpy2ri.deactivate()

    conversion.set_conversion(new_converter)
github afrendeiro / toolkit / toolkit / atacseq.py View on Github external
def normalize_quantiles_r(array):
            # install R package
            # source('http://bioconductor.org/biocLite.R')
            # biocLite('preprocessCore')

            import rpy2.robjects as robjects
            import rpy2.robjects.numpy2ri
            rpy2.robjects.numpy2ri.activate()

            robjects.r('require("preprocessCore")')
            normq = robjects.r('normalize.quantiles')
            return np.array(normq(array))
github zmzhang / pymass / python / r_functions.py View on Github external
def init_r():
    """
        1. Install R 3.4.1 with conda
        2. Install XCMS and PITracer in R
        3. Install rpy2 in with conda
    """
    numpy2ri.activate()
    wd = os.path.dirname(os.path.abspath(__file__)).replace('\\','/')
    robjects.r(f'''setwd(\'{wd}\')''')
    robjects.r('''source('r_functions.R')''')
    PIT = robjects.globalenv['PIT']
    XC = robjects.globalenv['XC']
    return PIT, XC
github amillb / pgMapMatch / mapmatcher.py View on Github external
def estimateQualityModel(self, holdback=0.3, threshold_score=0.7):
        """
        Given a table of the "good" trip ids (i.e., the trace has sufficient information and the fit is good)
        comes up with a prediction of the quality of that trip id

        holdback is the fraction that is held back for out of sample validation
        """
        import rpy2.robjects as ro
        import rpy2.robjects.numpy2ri
        import cPickle
        rpy2.robjects.numpy2ri.activate()
        df = self.getPostgresData()

        self.scatterplots(df)
        self.boxplots(df)

        # split sample into estimation and reserve
        random.seed(1)
        ids_reserve = random.sample(df.index.tolist(), int(len(df)*holdback))

        dfEst = df.loc[np.logical_not(df.index.isin(ids_reserve))]
        dfRes = df.loc[ids_reserve]

        models = {}

        models['model1'] = ['pingtime_mean', 'pingtime_max', 'frechet_dist', 'gpsMatchRatio', 'matchGpsRatio',
                            'll_dist_mean', 'll_dist_min', 'll_topol_mean', 'll_topol_min', 'll_distratio_mean',
github SPFlow / SPFlow / src / spn / structure / leaves / Histograms.py View on Github external
def init_rpy():
    if rpy_initialized:
        return

    from rpy2 import robjects
    from rpy2.robjects import numpy2ri
    import os
    path = os.path.dirname(__file__)
    with open(path + "/Histogram.R", "r") as rfile:
        code = ''.join(rfile.readlines())
        robjects.r(code)

    numpy2ri.activate()
github stephenslab / dsc / src / dsc_io.py View on Github external
def save_rds(data, filename):
    import collections, re
    import pandas as pd
    import numpy as np
    import rpy2.robjects as RO
    import rpy2.rinterface as RI
    from rpy2.robjects import numpy2ri
    numpy2ri.activate()
    from rpy2.robjects import pandas2ri
    pandas2ri.activate()
    # Supported data types:
    # int, float, str, tuple, list, numpy array
    # numpy matrix and pandas dataframe
    int_type = (int, np.int8, np.int16, np.int32, np.int64)
    float_type = (float, np.float)

    def assign(name, value):
        name = re.sub(r'[^\w' + '_.' + ']', '_', name)
        if isinstance(value, (tuple, list)):
            if all(isinstance(item, int_type) for item in value):
                value = np.asarray(value, dtype=int)
            elif all(isinstance(item, float_type) for item in value):
                value = np.asarray(value, dtype=float)
            else:
github selective-inference / Python-software / examples / riboflavin / CV.py View on Github external
import functools, hashlib

import numpy as np
from scipy.stats import norm as normal_dbn

import regreg.api as rr

from selection.algorithms.debiased_lasso import pseudoinverse_debiasing_matrix

# load in the X matrix

import rpy2.robjects as rpy
from rpy2.robjects import numpy2ri
rpy.r('library(hdi); data(riboflavin); X = riboflavin$x')
numpy2ri.activate()
X_full = np.asarray(rpy.r('X')) 
numpy2ri.deactivate()

from learn_selection.utils import full_model_inference, liu_inference, pivot_plot
from learn_selection.core import split_sampler, keras_fit, repeat_selection, infer_set_target
from learn_selection.Rutils import lasso_glmnet, cv_glmnet_lam
from learn_selection.learners import mixture_learner

def highdim_model_inference(X, 
                            y,
                            truth,
                            selection_algorithm,
                            sampler,
                            lam_min,
                            dispersion,
                            success_params=(1, 1),