Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def check_homogeneous(self, obj, mode, storage_mode):
converted = conversion.py2rpy(obj)
assert r["mode"](converted)[0] == mode
assert r["storage.mode"](converted)[0] == storage_mode
assert list(obj) == list(converted)
assert r["is.array"](converted)[0] is True
return converted
def test_series_issue264(self):
Series = pandas.core.series.Series
s = Series(('a', 'b', 'c', 'd', 'e'),
index=pandas.Int64Index([0,1,2,3,4]))
with localconverter(default_converter + rpyp.converter) as cv:
rp_s = robjects.conversion.py2rpy(s)
# segfault before the fix
str(rp_s)
assert isinstance(rp_s, rinterface.StrSexpVector)
def test_series_obj_mixed(self):
Series = pandas.core.series.Series
s = Series(['x', 1, False], index=['a', 'b', 'c'])
with localconverter(default_converter + rpyp.converter) as cv:
with pytest.raises(ValueError):
rp_s = robjects.conversion.py2rpy(s)
s = Series(['x', 1, None], index=['a', 'b', 'c'])
with localconverter(default_converter + rpyp.converter) as cv:
with pytest.raises(ValueError):
rp_s = robjects.conversion.py2rpy(s)
def test_object2String_with_None(self):
series = pandas.Series([None, "a","b","c","a"], dtype="O")
with localconverter(default_converter + rpyp.converter) as cv:
rp_c = robjects.conversion.py2rpy(series)
assert isinstance(rp_c, rinterface.StrSexpVector)
def test_scalar(self):
i32 = numpy.int32(100)
i32_r = conversion.py2rpy(i32)
i32_test = numpy.array(i32_r)[0]
assert i32 == i32_test
i64 = numpy.int64(100)
i64_r = conversion.py2rpy(i64)
i64_test = numpy.array(i64_r)[0]
assert i64 == i64_test
def constrained_base_structure_learning_si_hiton_pc(ldf, test="mc-mi", undirected=False):
rhitonpcfn = rpy2.robjects.r['si.hiton.pc']
with rpy2.robjects.conversion.localconverter(ro.default_converter + rpy2.robjects.pandas2ri.converter):
return rhitonpcfn(ro.conversion.py2rpy(ldf), test=test, undirected=undirected)
:param sep: separator character
:param quote: quote character
:param row_names: column name, or column index for column names
(warning: indexing starts at one in R)
:param fill: boolean (fill the lines when less entries than columns)
:param comment_char: comment character
:param na_strings: a list of strings which are interpreted to be NA
values
:param as_is: boolean (keep the columns of strings as such, or turn
them into factors)
"""
path = conversion.py2rpy(path)
header = conversion.py2rpy(header)
sep = conversion.py2rpy(sep)
quote = conversion.py2rpy(quote)
dec = conversion.py2rpy(dec)
if row_names is not rinterface.MissingArg:
row_names = conversion.py2rpy(row_names)
if col_names is not rinterface.MissingArg:
col_names = conversion.py2rpy(col_names)
fill = conversion.py2rpy(fill)
comment_char = conversion.py2rpy(comment_char)
as_is = conversion.py2rpy(as_is)
na_strings = conversion.py2rpy(na_strings)
res = DataFrame._read_csv(path,
**{'header': header, 'sep': sep,
'quote': quote, 'dec': dec,
'row.names': row_names,
'col.names': col_names,
'fill': fill,
'comment.char': comment_char,
'na.strings': na_strings,
def __setitem__(self, key, value):
rpy2_value = conversion.py2rpy(value)
self._robj.do_slot_assign(key, rpy2_value)
def __lt__(self, x):
res = globalenv_ri.find('<')(self._parent, conversion.py2rpy(x))
return conversion.rpy2py(res)
dict_converter.py2rpy.register(np.bool_, lambda x: conversion.py2rpy(bool(x)))
dict_converter.py2rpy.register(np.int_, lambda x: conversion.py2rpy(int(x)))