How to use the rpy2.robjects.IntVector function in rpy2

To help you get started, we’ve selected a few rpy2 examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github h2oai / h2o-2 / py / testdir_rpy2 / test_rpy2_1.py View on Github external
print "pi"
print type(r)
pi = r['pi']
print pi[0]
print type(pi)

print "piplus"
piplus = r('piplus = pi + 1')
print type (piplus)
print piplus
print piplus[0]


# some simple R things
print R.r.median(R.IntVector([1,2,3,4]))[0]

# create two R vectors and do correlation coefficient in R
a = R.IntVector([1,2,3,4])
b = R.IntVector([1,2,3,4])

# need the subscript to get authentic python type?
print R.r.cor(a,b,method="pearson")[0]

my_vec = R.IntVector([1,2,3,4])
my_chr_vec = R.StrVector(['aaa','bbb'])
my_float_vec = R.FloatVector([0.001,0.0002,0.003,0.4])

print "\nconvert to numpy array?"
vector = rpyn.ri2numpy(my_float_vec)
print vector
github rpy2 / rpy2 / tests / robjects / test_dataframe.py View on Github external
def test_init_stringsasfactors():
    od = {'a': robjects.IntVector((1,2)),
          'b': robjects.StrVector(('c', 'd'))}
    dataf = robjects.DataFrame(od, stringsasfactor=True)
    assert isinstance(dataf.rx2('b'), robjects.FactorVector)
    dataf = robjects.DataFrame(od, stringsasfactor=False)
    assert isinstance(dataf.rx2('b'), robjects.StrVector)
github rpy2 / rpy2 / tests / robjects / test_vector.py View on Github external
def test_sample():
    vec = robjects.IntVector(range(100))
    spl = vec.sample(10)
    assert len(spl) == 10
github rpy2 / rpy2 / tests / robjects / test_array.py View on Github external
def test_tcrossprod():
    m = robjects.r.matrix(robjects.IntVector(range(4)), nrow=2)
    mtcp = m.tcrossprod(m)
    for i,val in enumerate((4,6,6,10,)):
        assert mtcp[i] == val
github broadgsa / gatk-protected / playground / python / MergeEvalMapTabs.py View on Github external
fields = line.split()
        if len(fields) > 0 and ".read." in fields[0]:
            id = line.split()[0]
            read_poses.append(id.split(".")[-1])
            offsets.append(id.split(":")[1].split(".")[0])

        #if "read name :" in line:
        #    id = line.split()[3]
            
    import rpy2.robjects as robj
    if len(read_poses):
        print len(read_poses)
        return robj.r.hist(robj.FloatVector(read_poses), breaks=77, plot=False)
    else:
        print 0
        return robj.IntVector([])
github JoseBlanca / seq_crumbs / crumbs / vcf / filters.py View on Github external
def _fisher_extact_rxc(counts_obs, counts_exp):
    if (counts_obs, counts_exp) in FISHER_CACHE:
        return FISHER_CACHE[(counts_obs, counts_exp)]
    import rpy2.robjects as robjects
    env = robjects.r.baseenv()
    env['obs'] = robjects.IntVector(counts_obs)
    env['expected'] = robjects.IntVector(counts_exp)
    pvalue = robjects.r('fisher.test(cbind(obs, expected))$p.value')[0]

    FISHER_CACHE[(counts_obs, counts_exp)] = pvalue
    return pvalue
github svviz / svviz / src / svviz / dotplots.py View on Github external
tempFastaFile = open(tempFasta, "w")
    tempFastaFile.write(">seq\n{}".format(s1))
    tempFastaFile.close()

    proc = subprocess.Popen("yass -d 3 -o {} {}".format(tempYASSResult, tempFasta), shell=True,
        stderr=subprocess.PIPE)
    resultCode = proc.wait()
    if resultCode != 0:
        raise YassException("Check that yass is installed correctly")
    stderr = proc.stderr.readlines()[0].decode()
    if "Error" in stderr:
        print("Error running yass: '{}'".format(stderr))
        raise YassException("Error running yass")

    ro.r.png(tempPNG, res=150, width=1000, height=1000)
    ro.r.plot(ro.IntVector([0]), ro.IntVector([0]), type="n", xaxs="i", yaxs="i", 
              xlab="Position in reference allele", ylab="Position in reference allele",
              xlim=ro.IntVector([0,length]),
              ylim=ro.IntVector([0,length]))

    for line in open(tempYASSResult):
        if line.startswith("#"):continue
        res = line.strip().split()
        if float(res[-1]) < 0.1:
            if res[6]=="f":
                ro.r.segments(int(res[0]), int(res[2]), int(res[1]), int(res[3]), col="blue", lwd=1)
            else:
                ro.r.segments(int(res[1]), int(res[2]), int(res[0]), int(res[3]), col="red", lwd=1)

    for breakpoint in breakpoints:
        ro.r.abline(h=breakpoint, lty=2, col="gray")
        ro.r.abline(v=breakpoint, lty=2, col="gray")
github nanoporetech / tombo / tombo / _plot_commands.py View on Github external
if num_obs is not None:
            raw_signal = raw_signal[:num_obs]
        if add_vlines:
            corr_subgrp = fast5_data['/Analyses/' + corr_grp]
            event_starts = corr_subgrp['Events']['start']
            events_end = event_starts[-1] + corr_subgrp['Events']['length'][-1]
            raw_start = corr_subgrp['Events'].attrs.get('read_start_rel_to_raw')
            raw_end = raw_start + events_end
            if rna:
                tmp_raw_end = raw_signal.shape[0] - raw_start
                raw_start = raw_signal.shape[0] - raw_end
                raw_end = tmp_raw_end
            vlineDat = r.DataFrame({'Position':r.IntVector([
                raw_start, raw_end]),})
        elif manual_vlines is not None:
            vlineDat = r.DataFrame({'Position':r.IntVector(manual_vlines),})

    norm_signal, _ = ts.normalize_raw_signal(
        raw_signal, norm_type=norm_type, scale_values=scale_values)
    sigDat = r.DataFrame({
        'Position':r.IntVector(range(norm_signal.shape[0])),
        'Signal':r.FloatVector(norm_signal)})

    hDat = r.r('NULL')
    if highlight_pos is not None:
        if num_obs is not None:
            highlight_pos = highlight_pos[highlight_pos < num_obs]
        hDat = r.DataFrame({
            'Position':r.IntVector(highlight_pos),
            'Signal':r.FloatVector(norm_signal[highlight_pos])})
    hrDat = r.r('NULL')
    if highlight_ranges is not None:
github marcus1487 / nanoraw / nanoraw / plot_kmer_quantiles.py View on Github external
for sig_mean, read_i in all_trimers[kmer]]

    trimerDat = r.DataFrame({
        'Trimer':r.FactorVector(
            r.StrVector(zip(*plot_data)[0]),
            ordered=True, levels=r.StrVector(kmer_levels)),
        'Base':r.StrVector(zip(*plot_data)[1]),
        'Signal':r.FloatVector(zip(*plot_data)[2]),
        'Read':r.StrVector(zip(*plot_data)[3])})
    # code to plot kmers as tile of colors but adds gridExtra dependency
    if False:
        kmer_plot_data = [
            (kmer_i, pos_i, base) for kmer_i, kmer in enumerate(kmer_leves)
            for pos_i, base in enumerate(kmer)]
        kmerDat = r.DataFrame({
            'Kmer':r.IntVector(zip(*kmer_plot_data)[0]),
            'Position':r.IntVector(zip(*kmer_plot_data)[1]),
            'Base':r.StrVector(zip(*kmer_plot_data)[2])})

    if read_mean:
        r.r('pdf("' + fn_base + '.read_mean.pdf", height=7, width=10)')
        plotKmerDistWReadPath(trimerDat)
        r.r('dev.off()')
    else:
        r.r('pdf("' + fn_base + '.pdf", height=7, width=10)')
        plotKmerDist(trimerDat)
        r.r('dev.off()')

    return
github idrdex / star-django / analysis / forest.py View on Github external
def get_meta_analysis_from_r(gene_estimates):
    r.library("meta")
    m = r.metacont(
        robjects.IntVector(gene_estimates.caseDataCount),
        robjects.FloatVector(gene_estimates.caseDataMu),
        robjects.FloatVector(gene_estimates.caseDataSigma),
        robjects.IntVector(gene_estimates.controlDataCount),
        robjects.FloatVector(gene_estimates.controlDataMu),
        robjects.FloatVector(gene_estimates.controlDataSigma),
        studlab=robjects.StrVector(gene_estimates.gse),
        byvar=robjects.StrVector(gene_estimates.subset),
        bylab="subset",
        title=gene_estimates.title
    )
    return m