How to use the rpy2.robjects.FloatVector function in rpy2

To help you get started, we’ve selected a few rpy2 examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github h2oai / h2o-2 / py / testdir_rpy2 / test_rpy2_1.py View on Github external
print result.r['p.value'][0][0]

# t test
a = [1,2,3,4]
b = [2,3,4,5]
result = R.r['t.test'](R.IntVector(a),R.IntVector(b),alternative='two.sided',paired=True)
print result.r['p.value'][0][0]
print result.r['estimate'][0][0]
# for paired test, if estimate > 0, then a is greater than b, else, b is greater than a (mean)


# FDR correction
# the pvalue_lst has to be FloatVector
# first we might have a list of test result objects, make pvalue list first
pvalue_lst = [v.r['p.value'][0][0] for v in testResult_lst]
p_adjust = R.r['p.adjust'](R.FloatVector(pvalue_lst),method='BY')
for v in p_adjust:
    print v
github mad-lab / transit / src / pytransit / analysis / zinb.py View on Github external
condition,
                   covarsData,
                   interactionsData,
                   NZmean,
                   logitZPerc]) = self.melt_data(
                           norm_data,
                           conditions, covariates, interactions, NZMeanByRep, LogZPercByRep)
                if (numpy.sum(readCounts) == 0):
                    status.append("pan-essential (no counts in all conditions) - not analyzed")
                    pvals.append(1)
                else:
                    df_args = {
                        'cnt': IntVector(readCounts),
                        'cond': toRFloatOrStrVec(condition),
                        'NZmean': FloatVector(NZmean),
                        'logitZperc': FloatVector(logitZPerc)
                        }
                    ## Add columns for covariates and interactions if they exist.
                    df_args.update(list(map(lambda t_ic: (t_ic[1], toRFloatOrStrVec(covarsData[t_ic[0]])), enumerate(self.covars))))
                    df_args.update(list(map(lambda t_ic: (t_ic[1], toRFloatOrStrVec(interactionsData[t_ic[0]])), enumerate(self.interactions))))

                    melted = DataFrame(df_args)
                    # r_args = [IntVector(readCounts), StrVector(condition), melted, map(lambda x: StrVector(x), covars), FloatVector(NZmean), FloatVector(logitZPerc)] + [True]
                    debugFlag = True if DEBUG or GENE else False
                    pval, msg = r_zinb_signif(melted, zinbMod1, zinbMod0, nbMod1, nbMod0, debugFlag)
                    status.append(msg)
                    pvals.append(float(pval))
                if (DEBUG or GENE):
                    self.transit_message("Pval for Gene {0}: {1}, status: {2}".format(Rv, pvals[-1], status[-1]))
                if (GENE):
                    self.transit_message("Ran for single gene. Exiting...")
                    sys.exit(0)
github CGATOxford / CGATPipelines / CGATPipelines / PipelineMedip.py View on Github external
###########################################
        ###########################################
        # plot length versus P-Value
        data = Database.executewait(dbhandle,
                                    '''SELECT end - start, pvalue 
                             FROM %(tablename)s
                             WHERE significant''' % locals()).fetchall()

        # require at least 10 datapoints - otherwise smooth scatter fails
        if len(data) > 10:
            data = list(zip(*data))

            pngfile = "%(outdir)s/%(tileset)s_%(design)s_%(method)s_pvalue_vs_length.png" % locals()
            R.png(pngfile)
            R.smoothScatter(R.log10(ro.FloatVector(data[0])),
                            R.log10(ro.FloatVector(data[1])),
                            xlab='log10(length)',
                            ylab='log10(pvalue)',
                            log="x", pch=20, cex=.1)

            R['dev.off']()

    outf.close()
github salilab / imp / modules / isd / pyext / src / TuneRex.py View on Github external
def spline_diffusivity(pup, params):
    """spline interpolation of  diffusivity: D = 1/(df/dT * heta)
    """
    from numpy import linspace
    robjects.globalenv["hetay"] = \
        robjects.FloatVector(linspace(0, 1, num=len(params)).tolist())
    robjects.globalenv["hetax"] = robjects.FloatVector(params)
    robjects.globalenv["pupx"] = robjects.FloatVector(params)
    robjects.globalenv["pupy"] = robjects.FloatVector(pup)
    heta = r('heta <- splinefun(hetax,hetay,method="monoH.FC")')
    eff = r('eff <- splinefun(pupx,pupy,method="monoH.FC")')
    diff = r('diff <- function(x) {-1/(heta(x,deriv=1)*eff(x,deriv=1))}')
    return lambda x: diff(x)[0]
github gmcvicker / draw_genes / draw / splicejunctiontrack.py View on Github external
x1=junction.end, y1=bottom, col=color,
                           lwd=lwd)
            else:
                r.segments(x0=junction.start, y0=midpoint,
                           x1=junction.end, y1=midpoint, col=color,
                           lwd=lwd)

            x0 = [junction.start, junction.end]
            x1 = [junction.start, junction.end]
            y0 = [bottom, bottom]
            y1 = [top, top]
            
            r.segments(x0=robjects.FloatVector(x0),
                       y0=robjects.FloatVector(y0),
                       x1=robjects.FloatVector(x1),
                       y1=robjects.FloatVector(y1), col=color,
                       lwd=lwd)

            # add text giving read count 

            r.text(x=(junction.end + text_offset), y=midpoint,
                   labels=str(junction.read_count), col="black",
                   cex=0.5)
github grocsvs / grocsvs / src / grocsvs / graphing.py View on Github external
xlim = numpy.array([position-extend, position+extend])/scale
        if isreversed:
            xlim = xlim[::-1]
        
        ylim = [0,0]
        if len(bcs_to_rows) > 0:
            ylim = [0,max(bcs_to_rows.values())]

        ro.r.plot(ro.FloatVector([0]),
                  type="n", bty="n",
                  xlim=ro.FloatVector(xlim),
                  ylim=ro.FloatVector(ylim),
                  xlab="{} (mb)".format(chrom), ylab="Barcode")
        
        ro.r.abline(v=ro.FloatVector(breakpoint_lines/scale), lty=2, col="gray")

        if len(bcs_to_rows) == 0:
            continue

        ypos = numpy.array([bcs_to_rows[bc] for bc in frags["bc"]])
        # colors = numpy.where(cur_frags["supporting"], "black", "gray")
        support = []
        for row in frags.itertuples():
            if not row.supporting:
                support.append("background")
            elif numpy.isnan(row.hap):
                support.append("nohap")
            elif row.hap == 1:
                support.append("hap0")
            elif row.hap == 2 or row.hap == 0:
                support.append("hap1")
github grocsvs / grocsvs / src / grocsvs / graphing.py View on Github external
xlim = [start, end]
        if isreversed:
            xlim = xlim[::-1]

        ro.r.plot(
            ro.FloatVector(numpy.array(xs[i])/scale),
            ro.FloatVector(event_coverages[i].values),
            xlim=ro.FloatVector(numpy.array(xlim)/scale),
            ylim=ro.FloatVector(numpy.array(ylim)),
            type="n",
            bty="n", xlab="{} (mb)".format(chrom), ylab="Copy number", main="")

        ro.r.abline(v=ro.FloatVector(breakpoint_lines/scale), lty=2, col="gray")
        ro.r.abline(h=ro.FloatVector(numpy.arange(0,10)), lty=2, col="gray")

        ro.r.lines(ro.FloatVector(numpy.array(xs[i])/scale), ro.FloatVector(event_coverages[i].values), lwd=2)
github gmcvicker / draw_genes / draw / segmenttrack.py View on Github external
if len(self.features) == 0:
            # no features
            return

        feat_left = []
        feat_right = []
        for feat in self.features:
            feat_left.append(feat.start)
            feat_right.append(feat.end)

        feat_top = self.top - margin_height/2
        feat_bottom = feat_top - feat_height

        # draw rectangle for each feature
        r.rect(robjects.FloatVector(feat_left),
               feat_bottom,
               robjects.FloatVector(feat_right),
               feat_top,
               col=self.color, border=self.border_color)
github gmcvicker / draw_genes / draw / numerictrack.py View on Github external
if self.max_val == self.min_val:
            yscale = self.height
        else:
            yscale = self.height / (self.max_val - self.min_val)

        y_transform = (y - self.min_val) * yscale + self.bottom

        # draw tick marks
        r.segments(x0=robjects.FloatVector(x0),
                   x1=robjects.FloatVector(x1),
                   y0=robjects.FloatVector(y_transform),
                   y1=robjects.FloatVector(y_transform))

        # draw y-axis line
        r.segments(x0=robjects.FloatVector([x0[0]]),
                    x1=robjects.FloatVector([x0[0]]),
                    y0=robjects.FloatVector([y_transform[0]]),
                    y1=robjects.FloatVector([y_transform[-1]]))

        # draw labels beside tick marks
        if span >= 10.0:
            labels = [str(int(val)) for val in y]
        elif span >= 0.5:
            labels = ["%.1f" % val for val in y]
        elif span > 0.01:
            labels = ["%.2f" % val for val in y]
        else:
            labels = [str("%.2e" % val) for val in y]
        
        # x_label = self.region.start - tick_width * 0.5
        x_label = self.region.start
github gmcvicker / draw_genes / draw / continuoustrack.py View on Github external
# polygons have too many points
        block_sz = 10000
        for block_start in range(0, vals.size, block_sz):
            block_end = min(block_start + block_sz, vals.size)

            block_vals = vals[block_start:block_end]
            
            # identify contiguous segments with same values
            (x1, x2, y) = self.get_segments(block_vals)

            # new way of drawing: convert contiguous segments
            # to polygon coordinates
            (x, y) = self.get_polygon_coords(x1, x2, y)

            if len(x) > 0:
                r.polygon(robjects.FloatVector(x + block_start),
                          robjects.FloatVector(y),
                          col=self.color,
                          border=self.border_color)
                      
        # old way, 
        # n_seg = len(x1)
        # if n_seg > 0:
        #     r.rect(robjects.FloatVector(x1),
        #            robjects.FloatVector([self.bottom]),
        #            robjects.FloatVector(x2),
        #            robjects.FloatVector(y), col=self.color,
        #            border=robjects.NA_Logical)

        self.draw_y_axis(r, self.n_ticks)