Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def collect_results(self):
super().collect_results()
if self.status == 'running':
aws._wait_until_train_finished(
self.config, self.instance.id, self.submission)
self.status = 'finished'
if self.status != 'finished':
raise ValueError("Cannot collect results if worker is not"
"'running' or 'finished'")
logger.info("Collecting submission '{}'".format(self.submission))
aws.download_log(self.config, self.instance.id, self.submission)
if aws._training_successful(
self.config, self.instance.id, self.submission):
_ = aws.download_predictions( # noqa
self.config, self.instance.id, self.submission)
self.status = 'collected'
exit_status, error_msg = 0, ''
else:
error_msg = _get_traceback(
aws._get_log_content(self.config, self.submission))
self.status = 'collected'
exit_status = 1
logger.info(repr(self))
return exit_status, error_msg
label = _get_submission_label_by_id(config, submission_id)
submission = get_submission_by_id(config, submission_id)
actual_nb_folds = get_event_nb_folds(config, submission.event.name)
if _training_successful(conf_aws, instance_id, submission_id,
actual_nb_folds):
logger.info('Training of "{}" was successful'.format(
label, instance_id))
if conf_aws[MEMORY_PROFILING_FIELD]:
logger.info('Download max ram usage info of "{}"'.format(label))
download_mprof_data(conf_aws, instance_id, submission_id)
max_ram = _get_submission_max_ram(conf_aws, submission_id)
logger.info('Max ram usage of "{}": {}MB'.format(label, max_ram))
set_submission_max_ram(config, submission_id, max_ram)
logger.info('Downloading predictions of : "{}"'.format(label))
predictions_folder_path = download_predictions(
conf_aws, instance_id, submission_id)
set_predictions(config, submission_id, predictions_folder_path)
set_time(config, submission_id, predictions_folder_path)
set_scores(config, submission_id, predictions_folder_path)
set_submission_state(config, submission_id, 'tested')
logger.info('Scoring "{}"'.format(label))
score_submission(config, submission_id)
_run_hook(config, HOOK_SUCCESSFUL_TRAINING, submission_id)
else:
logger.info('Training of "{}" in "{}" failed'.format(
label, instance_id))
set_submission_state(config, submission_id, 'training_error')
error_msg = _get_traceback(
_get_log_content(conf_aws, submission_id))
set_submission_error_msg(config, submission_id, error_msg)
_run_hook(config, HOOK_FAILED_TRAINING, submission_id)
.format(label))
download_mprof_data(
conf_aws, instance_id, submission_name
)
max_ram = _get_submission_max_ram(
conf_aws, submission_name
)
logger.info('Max ram usage of "{}": {}MB'
.format(label, max_ram))
set_submission_max_ram(
config, submission_id, max_ram
)
logger.info('Downloading the predictions of "{}"'
.format(label))
path = download_predictions(
conf_aws, instance_id, submission_name)
set_predictions(config, submission_id, path)
set_time(config, submission_id, path)
set_scores(config, submission_id, path)
set_submission_state(config, submission_id, 'tested')
else:
logger.info('Training of "{}" failed'.format(label))
set_submission_state(
config, submission_id, 'training_error')
error_msg = _get_traceback(
_get_log_content(conf_aws, submission_name)
)
set_submission_error_msg(
config, submission_id, error_msg)
_run_hook(config, HOOK_FAILED_TRAINING, submission_id)
# training finished, so terminate the instance