Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
5) download th log
6) set the predictions in the database
7) score the submission
"""
conf_aws = config[AWS_CONFIG_SECTION]
upload_submission(conf_aws, instance_id, submission_id)
launch_train(conf_aws, instance_id, submission_id)
set_submission_state(config, submission_id, 'training')
_run_hook(config, HOOK_START_TRAINING, submission_id)
_wait_until_train_finished(conf_aws, instance_id, submission_id)
download_log(conf_aws, instance_id, submission_id)
label = _get_submission_label_by_id(config, submission_id)
submission = get_submission_by_id(config, submission_id)
actual_nb_folds = get_event_nb_folds(config, submission.event.name)
if _training_successful(conf_aws, instance_id, submission_id,
actual_nb_folds):
logger.info('Training of "{}" was successful'.format(
label, instance_id))
if conf_aws[MEMORY_PROFILING_FIELD]:
logger.info('Download max ram usage info of "{}"'.format(label))
download_mprof_data(conf_aws, instance_id, submission_id)
max_ram = _get_submission_max_ram(conf_aws, submission_id)
logger.info('Max ram usage of "{}": {}MB'.format(label, max_ram))
set_submission_max_ram(config, submission_id, max_ram)
logger.info('Downloading predictions of : "{}"'.format(label))
predictions_folder_path = download_predictions(
conf_aws, instance_id, submission_id)
set_predictions(config, submission_id, predictions_folder_path)
set_time(config, submission_id, predictions_folder_path)
set_scores(config, submission_id, predictions_folder_path)
def collect_results(self):
super().collect_results()
if self.status == 'running':
aws._wait_until_train_finished(
self.config, self.instance.id, self.submission)
self.status = 'finished'
if self.status != 'finished':
raise ValueError("Cannot collect results if worker is not"
"'running' or 'finished'")
logger.info("Collecting submission '{}'".format(self.submission))
aws.download_log(self.config, self.instance.id, self.submission)
if aws._training_successful(
self.config, self.instance.id, self.submission):
_ = aws.download_predictions( # noqa
self.config, self.instance.id, self.submission)
self.status = 'collected'
exit_status, error_msg = 0, ''
else:
error_msg = _get_traceback(
aws._get_log_content(self.config, self.submission))
self.status = 'collected'
exit_status = 1
logger.info(repr(self))
return exit_status, error_msg
set_submission_state(config, submission_id, 'training')
_run_hook(config, HOOK_START_TRAINING, submission_id)
elif state == 'training':
# in any case (successful training or not)
# download the log
download_log(conf_aws, instance_id, submission_name)
if _training_finished(conf_aws, instance_id, submission_name):
logger.info(
'Training of "{}" finished, checking '
'if successful or not...'.format(label))
submission = get_submission_by_id(config, submission_id)
actual_nb_folds = get_event_nb_folds(
config, submission.event.name
)
if _training_successful(
conf_aws,
instance_id,
submission_name,
actual_nb_folds):
logger.info('Training of "{}" was successful'
.format(label))
if conf_aws.get(MEMORY_PROFILING_FIELD):
logger.info('Download max ram usage info of "{}"'
.format(label))
download_mprof_data(
conf_aws, instance_id, submission_name
)
max_ram = _get_submission_max_ram(
conf_aws, submission_name
)
logger.info('Max ram usage of "{}": {}MB'