How to use the ramp-engine.ramp_engine.aws.api._get_log_content function in ramp-engine

To help you get started, we’ve selected a few ramp-engine examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github paris-saclay-cds / ramp-board / ramp-engine / ramp_engine / aws / aws_train.py View on Github external
logger.info('Downloading predictions of : "{}"'.format(label))
        predictions_folder_path = download_predictions(
            conf_aws, instance_id, submission_id)
        set_predictions(config, submission_id, predictions_folder_path)
        set_time(config, submission_id, predictions_folder_path)
        set_scores(config, submission_id, predictions_folder_path)
        set_submission_state(config, submission_id, 'tested')
        logger.info('Scoring "{}"'.format(label))
        score_submission(config, submission_id)
        _run_hook(config, HOOK_SUCCESSFUL_TRAINING, submission_id)
    else:
        logger.info('Training of "{}" in "{}" failed'.format(
            label, instance_id))
        set_submission_state(config, submission_id, 'training_error')
        error_msg = _get_traceback(
            _get_log_content(conf_aws, submission_id))
        set_submission_error_msg(config, submission_id, error_msg)
        _run_hook(config, HOOK_FAILED_TRAINING, submission_id)
github paris-saclay-cds / ramp-board / ramp-engine / ramp_engine / aws / aws_train.py View on Github external
)

                        logger.info('Downloading the predictions of "{}"'
                                    .format(label))
                        path = download_predictions(
                            conf_aws, instance_id, submission_name)
                        set_predictions(config, submission_id, path)
                        set_time(config, submission_id, path)
                        set_scores(config, submission_id, path)
                        set_submission_state(config, submission_id, 'tested')
                    else:
                        logger.info('Training of "{}" failed'.format(label))
                        set_submission_state(
                            config, submission_id, 'training_error')
                        error_msg = _get_traceback(
                            _get_log_content(conf_aws, submission_name)
                        )
                        set_submission_error_msg(
                            config, submission_id, error_msg)
                        _run_hook(config, HOOK_FAILED_TRAINING, submission_id)
                    # training finished, so terminate the instance
                    terminate_ec2_instance(conf_aws, instance_id)
        time.sleep(secs)
github paris-saclay-cds / ramp-board / ramp-engine / ramp_engine / aws / worker.py View on Github external
if self.status != 'finished':
            raise ValueError("Cannot collect results if worker is not"
                             "'running' or 'finished'")

        logger.info("Collecting submission '{}'".format(self.submission))
        aws.download_log(self.config, self.instance.id, self.submission)

        if aws._training_successful(
                self.config, self.instance.id, self.submission):
            _ = aws.download_predictions(  # noqa
                self.config, self.instance.id, self.submission)
            self.status = 'collected'
            exit_status, error_msg = 0, ''
        else:
            error_msg = _get_traceback(
                aws._get_log_content(self.config, self.submission))
            self.status = 'collected'
            exit_status = 1
        logger.info(repr(self))
        return exit_status, error_msg