How to use exoplanet - 10 common examples

To help you get started, we’ve selected a few exoplanet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github rodluger / starry / tests / test_in_transit.py View on Github external
def test_ylm():
    map = starry.Map(ydeg=1)
    map[1, :] = [0.3, 0.2, 0.1]
    orbit = exo.orbits.KeplerianOrbit(period=1.0, m_star=1.0, r_star=1.0)
    t = np.linspace(-0.25, 0.25, 100)
    theta = 30.

    # Compute the whole light curve with Theano
    f1 = map.flux(t=t, orbit=orbit, ro=0.1, theta=theta, use_in_transit=False).eval()

    # Compute just the transit with Theano
    f2 = map.flux(t=t, orbit=orbit, ro=0.1, theta=theta, use_in_transit=True).eval()

    # Compute the whole light curve without Theano
    coords = orbit.get_relative_position(t)
    xo = (coords[0] / orbit.r_star).eval()
    yo = (coords[1] / orbit.r_star).eval()
    zo = -(coords[2] / orbit.r_star).eval()
    f3 = map.flux(xo=xo, yo=yo, zo=zo, ro=0.1, theta=theta)
github rodluger / starry / tests / test_exposure.py View on Github external
def test_ylm_phase():
    texp = 0.05
    map = starry.Map(ydeg=2)
    np.random.seed(11)
    map[1:, :] = 0.1 * np.random.randn(8)
    theta = np.linspace(0, 360, 10000)
    t = np.linspace(-0.2, 0.2, 10000)
    orbit = exo.orbits.KeplerianOrbit(period=1.0)
    flux = map.flux(theta=theta)
    window = int(texp / (t[1] - t[0]))
    fluence_mavg = moving_average(flux, window)
    fluence_starry = map.flux(t=t, orbit=orbit, theta=theta, 
                              texp=texp, oversample=50).eval()

    # The error is primarily coming from our moving average
    # integrator, so let's be lenient
    f1 = fluence_mavg[window:-window]
    f2 = fluence_starry[window:-window]
    assert np.allclose(f1, f2, atol=1e-4, rtol=1e-4)
github rodluger / starry / tests / test_exposure.py View on Github external
def test_ylm_occ():
    texp = 0.05
    map = starry.Map(ydeg=2)
    np.random.seed(11)
    map[1:, :] = 0.1 * np.random.randn(8)
    orbit = exo.orbits.KeplerianOrbit(period=1.0, m_star=1.0, r_star=1.0)
    t = np.linspace(-0.2, 0.2, 10000)
    flux = map.flux(t=t, orbit=orbit, ro=0.1).eval()
    xo = orbit.get_relative_position(t)[0].eval()
    yo = orbit.get_relative_position(t)[1].eval()
    flux = map.flux(xo=xo, yo=yo, ro=0.1)
    fluence_mavg = moving_average(flux, int(texp / (t[1] - t[0])))
    fluence_starry = map.flux(t=t, orbit=orbit, ro=0.1, 
                              texp=texp, oversample=30).eval()
    fluence_starry_vec = map.flux(t=t, orbit=orbit, ro=0.1, 
                              texp=np.ones_like(t) * texp, oversample=30).eval()
    assert np.allclose(fluence_mavg, fluence_starry, fluence_starry_vec)
github rodluger / starry / tests / greedy / test_system_rv_greedy.py View on Github external
w=60,
        length_unit=u.Rsun,
        mass_unit=u.Msun,
        angle_unit=u.degree,
        time_unit=u.day,
    )

    # Define the system
    sys = starry.System(A, b)

    # Compute with starry
    time = np.linspace(-0.5, 0.5, 1000)
    rv1 = sys.rv(time, keplerian=True)

    # Compute with exoplanet
    orbit = exoplanet.orbits.KeplerianOrbit(
        period=1.0,
        t0=0.0,
        incl=86.0 * np.pi / 180,
        ecc=0.3,
        omega=60 * np.pi / 180,
        m_planet=0.01,
        m_star=1.0,
        r_star=1.0,
    )
    rv2 = orbit.get_radial_velocity(time).eval()

    assert np.allclose(rv1, rv2)
github rodluger / starry / tests / test_exposure.py View on Github external
def test_ld():
    texp = 0.05
    map = starry.Map(udeg=2)
    map[1:] = [0.4, 0.26]
    orbit = exo.orbits.KeplerianOrbit(period=1.0, m_star=1.0, r_star=1.0)
    t = np.linspace(-0.2, 0.2, 10000)
    flux = map.flux(t=t, orbit=orbit, ro=0.1).eval()
    fluence_mavg = moving_average(flux, int(texp / (t[1] - t[0])))
    fluence_starry = map.flux(t=t, orbit=orbit, ro=0.1, 
                              texp=texp, oversample=30).eval()
    fluence_starry_vec = map.flux(t=t, orbit=orbit, ro=0.1, 
                              texp=np.ones_like(t) * texp, oversample=30).eval()
    assert np.allclose(fluence_mavg, fluence_starry, fluence_starry_vec)
github rodluger / starry / tests / test_in_transit.py View on Github external
def test_ld():
    map = starry.Map(udeg=2)
    map[1:] = [0.4, 0.26]
    orbit = exo.orbits.KeplerianOrbit(period=1.0, m_star=1.0, r_star=1.0)
    t = np.linspace(-0.25, 0.25, 100)

    # Compute the whole light curve with Theano
    f1 = map.flux(t=t, orbit=orbit, ro=0.1, use_in_transit=False).eval()

    # Compute just the transit with Theano
    f2 = map.flux(t=t, orbit=orbit, ro=0.1, use_in_transit=True).eval()

    # Compute the whole light curve without Theano
    coords = orbit.get_relative_position(t)
    xo = (coords[0] / orbit.r_star).eval()
    yo = (coords[1] / orbit.r_star).eval()
    b = np.sqrt(xo * xo + yo * yo)
    zo = -(coords[2] / orbit.r_star).eval()
    f3 = map.flux(b=b, zo=zo, ro=0.1)
github rodluger / starry / starry / _core / core.py View on Github external
dt = np.linspace(-0.5, 0.5, oversample)
                stencil[1:-1:2] = 4
                stencil[2:-1:2] = 2
            else:
                raise ValueError("Parameter `order` must be <= 2")
            stencil /= np.sum(stencil)

            if texp.ndim == 0:
                dt = texp * dt
            else:
                dt = tt.shape_padright(texp) * dt
            t = tt.shape_padright(t) + dt
            t = tt.reshape(t, (-1,))

        # Compute the relative positions of all bodies
        orbit = exoplanet.orbits.KeplerianOrbit(
            period=sec_porb,
            t0=sec_t0,
            incl=sec_iorb,
            ecc=sec_ecc,
            omega=sec_w,
            Omega=sec_Omega,
            m_planet=sec_m,
            m_star=pri_m,
            r_star=pri_r,
        )
        try:
            x, y, z = orbit.get_relative_position(
                t, light_delay=self.light_delay
            )
        except TypeError:
            if self.light_delay:
github rodluger / starry / starry / orbits / orbits.py View on Github external
import exoplanet
from packaging import version
import theano.tensor as tt
import numpy as np
from ..ops import autocompile


# NOTE: In version 0.1.7, DFM changed the coordinates
# so that the z-axis points TOWARD the observer!
if version.parse(exoplanet.__version__) > version.parse('0.1.7.dev0'):
    z_sign = 1
else:
    z_sign = -1


class KeplerianOrbit(exoplanet.orbits.KeplerianOrbit):
    """
    A wrapper around `exoplanet.orbits.KeplerianOrbit` that
    plays nice with `starry`. Refer to the docs of that class
    for all accepted keywords. In addition to those, this class
    accepts the following keyword arguments:

    Args:
        r_planet: The radius of the planet in ``R_sun``. Default is 
            the radius of the Earth.
        rot_period: The period of rotation of the planet in days.
            Default ``1.0``. Set to ``None`` to disable rotation.
        theta0: The rotational phase in degrees at ``t=t0``.
            Default ``0.0``
        lazy: 

    """
github rodluger / starry / scripts / exoplanet_inference.py View on Github external
# The time of a reference transit for each planet
    t0 = pm.Normal("t0", mu=t0_true, sd=1.0)
    
    # The log period; also tracking the period itself
    logP = pm.Normal("logP", mu=np.log(period_true), sd=0.1)
    period = pm.Deterministic("period", pm.math.exp(logP))
    
    # Normal distributions for the map coeffs
    y = pm.Normal("y", mu=y_true, sd=1.0, shape=len(y_true))

    # Normal distributions for r and b
    r = pm.Normal("r", mu=0.06, sd=0.001)
    b = pm.Normal("b", mu=0.4, sd=0.03)
    
    # Set up a Keplerian orbit for the planets
    orbit = xo.orbits.KeplerianOrbit(period=period, t0=t0, b=b)
    
    # Compute the model light curve using starry
    light_curve = op.get_light_curve(orbit=orbit, r=r, t=t, y=y) + mean
    
    # Here we track the value of the model light curve for plotting
    # purposes
    pm.Deterministic("light_curve", light_curve)
    
    # In this line, we simulate the dataset that we will fit
    flux = xo.eval_in_model(light_curve)
    flux += ferr * np.random.randn(len(flux))
    
    # The likelihood function assuming known Gaussian uncertainty
    pm.Normal("obs", mu=light_curve, sd=ferr, observed=flux)
    
    # Fit for the maximum a posteriori parameters given the simuated
github dfm / exoplanet / paper / notebooks / scaling / scaling.py View on Github external
# The amlitudes should be sorted
    pm.Potential("logK_order", tt.switch(logK[1:] > logK[:-1], -np.inf, 0.0))

    # We also want to keep period physical but this probably won't be hit
    pm.Potential("P_bound", tt.switch(P <= 0, -np.inf, 0.0))

    # Eccentricity & argument of periasteron
    ecc = pm.Uniform("ecc", lower=0, upper=0.99, shape=N_pl, testval=eccs)
    omega = xo.distributions.Angle("omega", shape=N_pl, testval=omegas)

    # Jitter & a quadratic RV trend
    # logs = pm.Normal("logs", mu=np.log(np.median(yerr)), sd=5.0)
    trend = pm.Normal("trend", mu=0, sd=10.0 ** -np.arange(3)[::-1], shape=3)

    # Set up the orbit
    orbit = xo.orbits.KeplerianOrbit(period=P, t0=t0, ecc=ecc, omega=omega)

    # Set up the RV model and save it as a deterministic
    # for plotting purposes later
    vrad = orbit.get_radial_velocity(x, K=tt.exp(logK))
    if N_pl == 1:
        vrad = vrad[:, None]

    # Define the background model
    A = np.vander(x - 0.5 * (x.min() + x.max()), 3)
    bkg = tt.dot(A, trend)

    # Sum over planets and add the background to get the full model
    rv_model = tt.sum(vrad, axis=-1) + bkg

    # Simulate the data
    y_true = xo.eval_in_model(rv_model)