Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, lower=0, upper=1, **kwargs):
self.lower = lower
self.upper = upper
transform = kwargs.pop("transform", None)
if transform is None:
transform = tr.PeriodicTransform(
lower=lower,
upper=upper,
regularized=kwargs.pop("regularized", 10.0),
)
kwargs["transform"] = transform
shape = kwargs.get("shape", None)
if shape is None:
testval = 0.5 * (lower + upper)
else:
testval = 0.5 * (lower + upper) + np.zeros(shape)
kwargs["testval"] = kwargs.pop("testval", testval)
super(Periodic, self).__init__(**kwargs)
def __init__(self, *args, **kwargs):
add_citations_to_model(self.__citations__, kwargs.get("model", None))
# Make sure that the shape is compatible
shape = kwargs.get("shape", 2)
try:
if list(shape)[0] != 2:
raise ValueError("the first dimension should be exactly 2")
except TypeError:
if shape != 2:
raise ValueError("the first dimension should be exactly 2")
self.min_radius = kwargs.pop("min_radius", 0)
self.max_radius = kwargs.pop("max_radius", 1)
transform = tr.radius_impact(self.min_radius, self.max_radius)
kwargs["shape"] = shape
kwargs["transform"] = transform
super(RadiusImpact, self).__init__(*args, **kwargs)
# Work out some reasonable starting values for the parameters
default = np.zeros(shape)
mn, mx = draw_values([self.min_radius - 0.0, self.max_radius - 0.0])
default[0] = 0.5 * (mn + mx)
default[1] = 0.5
self._default = default
def __init__(self, *args, **kwargs):
kwargs["transform"] = tr.unit_vector
super(UnitVector, self).__init__(*args, **kwargs)
def __init__(self, ror=None, **kwargs):
if ror is None:
raise ValueError("missing required parameter 'ror'")
self.ror = tt.as_tensor_variable(ror)
kwargs["transform"] = kwargs.pop(
"transform", tr.ImpactParameterTransform(self.ror)
)
shape = kwargs.get("shape", None)
if shape is None:
testval = 0.5
else:
testval = 0.5 + np.zeros(shape)
kwargs["testval"] = kwargs.pop("testval", testval)
super(ImpactParameter, self).__init__(**kwargs)
def __init__(self, *args, **kwargs):
transform = kwargs.pop("transform", None)
if transform is None:
if "regularized" in kwargs:
transform = tr.AngleTransform(
regularized=kwargs.pop("regularized")
)
else:
transform = tr.angle
kwargs["transform"] = transform
shape = kwargs.get("shape", None)
if shape is None:
testval = 0.0
else:
testval = np.zeros(shape)
kwargs["testval"] = kwargs.pop("testval", testval)
super(Angle, self).__init__(*args, **kwargs)
def __init__(self, *args, **kwargs):
add_citations_to_model(self.__citations__, kwargs.get("model", None))
# Make sure that the shape is compatible
shape = kwargs.get("shape", 2)
try:
if list(shape)[0] != 2:
raise ValueError("the first dimension should be exactly 2")
except TypeError:
if shape != 2:
raise ValueError("the first dimension should be exactly 2")
kwargs["shape"] = shape
kwargs["transform"] = tr.quad_limb_dark
super(QuadLimbDark, self).__init__(*args, **kwargs)
# Work out some reasonable starting values for the parameters
default = np.zeros(shape)
default[0] = np.sqrt(0.5)
default[1] = 0.0
self._default = default
def __init__(self, *args, **kwargs):
transform = kwargs.pop("transform", None)
if transform is None:
if "regularized" in kwargs:
transform = tr.AngleTransform(
regularized=kwargs.pop("regularized")
)
else:
transform = tr.angle
kwargs["transform"] = transform
shape = kwargs.get("shape", None)
if shape is None:
testval = 0.0
else:
testval = np.zeros(shape)
kwargs["testval"] = kwargs.pop("testval", testval)
super(Angle, self).__init__(*args, **kwargs)