Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_ylm():
map = starry.Map(ydeg=1)
map[1, :] = [0.3, 0.2, 0.1]
orbit = exo.orbits.KeplerianOrbit(period=1.0, m_star=1.0, r_star=1.0)
t = np.linspace(-0.25, 0.25, 100)
theta = 30.
# Compute the whole light curve with Theano
f1 = map.flux(t=t, orbit=orbit, ro=0.1, theta=theta, use_in_transit=False).eval()
# Compute just the transit with Theano
f2 = map.flux(t=t, orbit=orbit, ro=0.1, theta=theta, use_in_transit=True).eval()
# Compute the whole light curve without Theano
coords = orbit.get_relative_position(t)
xo = (coords[0] / orbit.r_star).eval()
yo = (coords[1] / orbit.r_star).eval()
zo = -(coords[2] / orbit.r_star).eval()
f3 = map.flux(xo=xo, yo=yo, zo=zo, ro=0.1, theta=theta)
def test_ylm_occ():
texp = 0.05
map = starry.Map(ydeg=2)
np.random.seed(11)
map[1:, :] = 0.1 * np.random.randn(8)
orbit = exo.orbits.KeplerianOrbit(period=1.0, m_star=1.0, r_star=1.0)
t = np.linspace(-0.2, 0.2, 10000)
flux = map.flux(t=t, orbit=orbit, ro=0.1).eval()
xo = orbit.get_relative_position(t)[0].eval()
yo = orbit.get_relative_position(t)[1].eval()
flux = map.flux(xo=xo, yo=yo, ro=0.1)
fluence_mavg = moving_average(flux, int(texp / (t[1] - t[0])))
fluence_starry = map.flux(t=t, orbit=orbit, ro=0.1,
texp=texp, oversample=30).eval()
fluence_starry_vec = map.flux(t=t, orbit=orbit, ro=0.1,
texp=np.ones_like(t) * texp, oversample=30).eval()
assert np.allclose(fluence_mavg, fluence_starry, fluence_starry_vec)
w=60,
length_unit=u.Rsun,
mass_unit=u.Msun,
angle_unit=u.degree,
time_unit=u.day,
)
# Define the system
sys = starry.System(A, b)
# Compute with starry
time = np.linspace(-0.5, 0.5, 1000)
rv1 = sys.rv(time, keplerian=True)
# Compute with exoplanet
orbit = exoplanet.orbits.KeplerianOrbit(
period=1.0,
t0=0.0,
incl=86.0 * np.pi / 180,
ecc=0.3,
omega=60 * np.pi / 180,
m_planet=0.01,
m_star=1.0,
r_star=1.0,
)
rv2 = orbit.get_radial_velocity(time).eval()
assert np.allclose(rv1, rv2)
def test_ld():
texp = 0.05
map = starry.Map(udeg=2)
map[1:] = [0.4, 0.26]
orbit = exo.orbits.KeplerianOrbit(period=1.0, m_star=1.0, r_star=1.0)
t = np.linspace(-0.2, 0.2, 10000)
flux = map.flux(t=t, orbit=orbit, ro=0.1).eval()
fluence_mavg = moving_average(flux, int(texp / (t[1] - t[0])))
fluence_starry = map.flux(t=t, orbit=orbit, ro=0.1,
texp=texp, oversample=30).eval()
fluence_starry_vec = map.flux(t=t, orbit=orbit, ro=0.1,
texp=np.ones_like(t) * texp, oversample=30).eval()
assert np.allclose(fluence_mavg, fluence_starry, fluence_starry_vec)
def test_ld():
map = starry.Map(udeg=2)
map[1:] = [0.4, 0.26]
orbit = exo.orbits.KeplerianOrbit(period=1.0, m_star=1.0, r_star=1.0)
t = np.linspace(-0.25, 0.25, 100)
# Compute the whole light curve with Theano
f1 = map.flux(t=t, orbit=orbit, ro=0.1, use_in_transit=False).eval()
# Compute just the transit with Theano
f2 = map.flux(t=t, orbit=orbit, ro=0.1, use_in_transit=True).eval()
# Compute the whole light curve without Theano
coords = orbit.get_relative_position(t)
xo = (coords[0] / orbit.r_star).eval()
yo = (coords[1] / orbit.r_star).eval()
b = np.sqrt(xo * xo + yo * yo)
zo = -(coords[2] / orbit.r_star).eval()
f3 = map.flux(b=b, zo=zo, ro=0.1)
import exoplanet
from packaging import version
import theano.tensor as tt
import numpy as np
from ..ops import autocompile
# NOTE: In version 0.1.7, DFM changed the coordinates
# so that the z-axis points TOWARD the observer!
if version.parse(exoplanet.__version__) > version.parse('0.1.7.dev0'):
z_sign = 1
else:
z_sign = -1
class KeplerianOrbit(exoplanet.orbits.KeplerianOrbit):
"""
A wrapper around `exoplanet.orbits.KeplerianOrbit` that
plays nice with `starry`. Refer to the docs of that class
for all accepted keywords. In addition to those, this class
accepts the following keyword arguments:
Args:
r_planet: The radius of the planet in ``R_sun``. Default is
the radius of the Earth.
rot_period: The period of rotation of the planet in days.
Default ``1.0``. Set to ``None`` to disable rotation.
theta0: The rotational phase in degrees at ``t=t0``.
Default ``0.0``
lazy:
"""
# The time of a reference transit for each planet
t0 = pm.Normal("t0", mu=t0_true, sd=1.0)
# The log period; also tracking the period itself
logP = pm.Normal("logP", mu=np.log(period_true), sd=0.1)
period = pm.Deterministic("period", pm.math.exp(logP))
# Normal distributions for the map coeffs
y = pm.Normal("y", mu=y_true, sd=1.0, shape=len(y_true))
# Normal distributions for r and b
r = pm.Normal("r", mu=0.06, sd=0.001)
b = pm.Normal("b", mu=0.4, sd=0.03)
# Set up a Keplerian orbit for the planets
orbit = xo.orbits.KeplerianOrbit(period=period, t0=t0, b=b)
# Compute the model light curve using starry
light_curve = op.get_light_curve(orbit=orbit, r=r, t=t, y=y) + mean
# Here we track the value of the model light curve for plotting
# purposes
pm.Deterministic("light_curve", light_curve)
# In this line, we simulate the dataset that we will fit
flux = xo.eval_in_model(light_curve)
flux += ferr * np.random.randn(len(flux))
# The likelihood function assuming known Gaussian uncertainty
pm.Normal("obs", mu=light_curve, sd=ferr, observed=flux)
# Fit for the maximum a posteriori parameters given the simuated
names = ['t_peri', 'obs']
to_remove = []
for name in names:
for i, par in enumerate(model.vars):
if par.name == name:
to_remove.append(par)
del model.named_vars[name]
[model.vars.remove(p) for p in to_remove]
p = self.prior.pars
with model:
t_peri = pm.Deterministic('t_peri',
p['P'] * p['M0'] / (2*np.pi))
# Set up the orbit model
orbit = xo.orbits.KeplerianOrbit(period=p['P'],
ecc=p['e'],
omega=p['omega'],
t_periastron=t_peri)
# design matrix
M = get_trend_design_matrix(data, ids, self.prior.poly_trend)
# deal with v0_offsets, trend here:
_, offset_names = validate_n_offsets(self.prior.n_offsets)
_, vtrend_names = validate_poly_trend(self.prior.poly_trend)
with model:
v_pars = ([p['v0']]
+ [p[name] for name in offset_names]
+ [p[name] for name in vtrend_names[1:]]) # skip v0
v_trend_vec = tt.stack(v_pars, axis=0)
# We're not fitting for theta
# @dfm: How do I prevent pymc3 from fitting for it?
theta = np.ones_like(t) # np.ones_like(t) * pm.Uniform("theta", 0, 1)
# The map Ylm degree is zero, so there are no Ylms to fit
y = np.empty(0)
# y = tt.as_tensor_variable([], name='y')
# y.name = 'y'
# Vectorize the occultor radius
rs = np.ones_like(t) * r
rs.name = 'r'
# Set up a Keplerian orbit for the planet
orbit = xo.orbits.KeplerianOrbit(period=period, t0=t0, b=b)
coords = orbit.get_relative_position(t)
_x = coords[0]
_y = coords[1]
_z = -coords[2]
# Compute the model light curve using starry
rv_model = starry_op(
y,
u,
inc,
obl,
veq,
alpha,
theta,
_x,
_y,
"b": 0.25,
"r": 0.1,
"u": [0.4, 0.26],
"rv_err": 0.0005
}
# Generate a synthetic dataset
t = np.linspace(-0.15, 0.15, 1000)
udeg = len(truths["u"])
map = starry.DopplerMap(udeg=udeg)
map[1:] = truths["u"]
map.inc = truths["inc"]
map.obl = truths["obl"]
map.alpha = truths["alpha"]
map.veq = truths["veq"]
orbit = xo.orbits.KeplerianOrbit(period=truths["period"],
t0=truths["t0"], b=truths["b"])
coords = orbit.get_relative_position(t)
x = coords[0].eval()
y = coords[1].eval()
z = -coords[2].eval()
truths["rv"] = map.rv(xo=x, yo=y, zo=z, ro=truths["r"])
# Noise it
rv = truths["rv"] + truths["rv_err"] * np.random.randn(len(t))
# Plot it
plt.plot(t, rv, 'k.', alpha=0.3, ms=3)
plt.plot(t, truths["rv"])
plt.show()
# Sample it