Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Associate the sampler with the campaign
my_campaign.set_sampler(my_sampler)
# Will draw all (of the finite set of samples)
my_campaign.draw_samples()
my_campaign.populate_runs_dir()
# Use this instead to run the samples using EasyVVUQ on the localhost
my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(
"tests/sc/sc_model.py ade_in.json"))
my_campaign.collate()
# Post-processing analysis
analysis = uq.analysis.SCAnalysis(sampler=my_sampler, qoi_cols=output_columns)
my_campaign.apply_analysis(analysis)
#import pickle
#pickle.dump(analysis, open('analysis.p', 'wb'))
results = my_campaign.get_last_analysis()
return results, my_sampler, analysis
# Associate the sampler with the campaign
my_campaign.set_sampler(my_sampler)
# Will draw all (of the finite set of samples)
my_campaign.draw_samples()
my_campaign.populate_runs_dir()
# Use this instead to run the samples using EasyVVUQ on the localhost
my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(
"tests/sc/sobol_model.py sobol_in.json"))
my_campaign.collate()
# Post-processing analysis
analysis = uq.analysis.SCAnalysis(sampler=my_sampler, qoi_cols=output_columns)
my_campaign.apply_analysis(analysis)
results = my_campaign.get_last_analysis()
print(results['sobols_first'])
print_exact_sobols()
plt.show()
my_campaign.set_sampler(my_sampler)
print('Number of samples:', my_sampler._number_of_samples)
# Will draw all (of the finite set of samples)
my_campaign.draw_samples()
my_campaign.populate_runs_dir()
# Use this instead to run the samples using EasyVVUQ on the localhost
my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(
"tests/sc/poly_model.py poly_in.json"))
my_campaign.collate()
# Post-processing analysis
analysis = uq.analysis.SCAnalysis(sampler=my_sampler, qoi_cols=output_columns)
my_campaign.apply_analysis(analysis)
results = my_campaign.get_last_analysis()
# update the sparse grid to the next level
my_sampler.next_level_sparse_grid()
# draw the new samples
my_campaign.draw_samples()
my_campaign.populate_runs_dir()
my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(
"tests/sc/poly_model.py poly_in.json"))
my_campaign.collate()
my_campaign.apply_analysis(analysis)
results = my_campaign.get_last_analysis()
output_columns = ["u"]
encoder = uq.encoders.GenericEncoder(
template_fname=f'tests/sc/sc.template',
delimiter='$',
target_filename='sc_in.json')
decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
output_columns=output_columns,
header=0)
collater = uq.collate.AggregateSamples(average=False)
vary = {
"Pe": cp.Uniform(100.0, 200.0),
"f": cp.Normal(1.0, 0.1)
}
sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=1)
actions = uq.actions.ExecuteLocal(f"tests/sc/sc_model.py sc_in.json")
stats = uq.analysis.SCAnalysis(sampler=sampler, qoi_cols=output_columns)
campaign(tmpdir, 'sc', 'sc', params, encoder, decoder, sampler,
collater, actions, stats, vary, 0, 1)
sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=4)
my_campaign = uq.Campaign(name='gauss_vector', work_dir=tmpdir)
my_campaign.add_app(name="gauss_vector",
params=params,
encoder=encoder,
decoder=decoder,
collater=collater)
my_campaign.set_sampler(sampler)
my_campaign.draw_samples()
my_campaign.populate_runs_dir()
my_campaign.apply_for_each_run_dir(actions)
my_campaign.collate()
data = my_campaign.get_collation_result()
print("===== DATA:\n ", data)
analysis = uq.analysis.SCAnalysis(sampler=sampler, qoi_cols=["numbers"])
my_campaign.apply_analysis(analysis)
results = my_campaign.get_last_analysis()
# Associate the sampler with the campaign
my_campaign.set_sampler(my_sampler)
# Will draw all (of the finite set of samples)
my_campaign.draw_samples()
my_campaign.populate_runs_dir()
# Run the samples using EasyVVUQ on the localhost
my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(
"tests/sc/poly_model_anisotropic.py poly_in.json"))
my_campaign.collate()
data_frame = my_campaign.get_collation_result()
# Post-processing analysis
analysis = uq.analysis.SCAnalysis(sampler=my_sampler, qoi_cols=output_columns)
my_campaign.apply_analysis(analysis)
for i in range(number_of_adaptations):
my_sampler.look_ahead(analysis.l_norm)
my_campaign.draw_samples()
my_campaign.populate_runs_dir()
my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(
"tests/sc/poly_model_anisotropic.py poly_in.json"))
my_campaign.collate()
data_frame = my_campaign.get_collation_result()
analysis.adapt_dimension('f', data_frame)
my_campaign.apply_analysis(analysis)