How to use the traitlets.Int function in traitlets

To help you get started, we’ve selected a few traitlets examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github leokarlin / LaSO / scripts_coco / test_precision.py View on Github external
resume_epoch = Int(0, config=True, help="Epoch to resume (requires using also '--resume_path'.")
    coco_path = Unicode(u"/tmp/aa/coco", config=True, help="path to local coco dataset path")
    init_inception = Bool(True, config=True, help="Initialize the inception networks using the paper's base network.")

    #
    # Network hyper parameters
    #
    base_network_name = Unicode("Inception3", config=True, help="Name of base network to use.")
    avgpool_kernel = Int(10, config=True,
                         help="Size of the last avgpool layer in the Resnet. Should match the cropsize.")
    classifier_name = Unicode("Inception3Classifier", config=True, help="Name of classifier to use.")
    sets_network_name = Unicode("SetOpsResModule", config=True, help="Name of setops module to use.")
    sets_block_name = Unicode("SetopResBlock_v1", config=True, help="Name of setops network to use.")
    sets_basic_block_name = Unicode("SetopResBasicBlock", config=True,
                                    help="Name of the basic setops block to use (where applicable).")
    ops_layer_num = Int(1, config=True, help="Ops Module layers num.")
    ops_latent_dim = Int(1024, config=True, help="Ops Module inner latent dim.")
    setops_dropout = Float(0, config=True, help="Dropout ratio of setops module.")
    crop_size = Int(299, config=True, help="Size of input crop (Resnet 224, inception 299).")
    scale_size = Int(350, config=True, help="Size of input scale for data augmentation. default: 350")
    paper_reproduce = Bool(False, config=True, help="Use paper reproduction settings. default: False")
    discriminator_name = Unicode("AmitDiscriminator", config=True,
                                 help="Name of discriminator (unseen classifier) to use. default: AmitDiscriminator")
    embedding_dim = Int(2048, config=True, help="Dimensionality of the LaSO space. default:2048")
    classifier_latent_dim = Int(2048, config=True, help="Dimensionality of the classifier latent space. default:2048")

    def run(self):

        #
        # Setup the model
        #
        base_model, classifier, setops_model = self.setup_model()
github Jupyter-Kale / kale / kale / workflow_objects.py View on Github external
# local
import kale.batch_jobs

# TODO - Convert print statements to logging statements

# TODO - update all instances of default arguments set to a mutable e.g.; [], {}
class WorkerPool(traitlets.HasTraits):
    """Pool of workers which can execute jobs."""

    futures = traitlets.List()
    workers = traitlets.List()
    wf_executor = traitlets.Unicode()
    name = traitlets.Unicode()
    location = traitlets.Unicode()
    num_workers = traitlets.Int()

    def __init__(self, name, num_workers, fwconfig=None, location='localhost',  wf_executor='fireworks'):

        super().__init__()

        self.futures = []
        self.workers = []
        self.wf_executor = wf_executor
        self.name = name
        self.fwconfig = fwconfig
        self.location = location
        self.log_area = ipw.Output()

        self._add_workers(num_workers)

        if wf_executor == 'fireworks':
github uktrade / fargatespawner / fargatespawner / fargatespawner.py View on Github external
access_key_id=self.aws_access_key_id,
            secret_access_key=self.aws_secret_access_key,
            pre_auth_headers=self.pre_auth_headers,
        )

class FargateSpawner(Spawner):

    aws_region = Unicode(config=True)
    aws_ecs_host = Unicode(config=True)
    task_role_arn = Unicode(config=True)
    task_cluster_name = Unicode(config=True)
    task_container_name = Unicode(config=True)
    task_definition_arn = Unicode(config=True)
    task_security_groups = List(trait=Unicode, config=True)
    task_subnets = List(trait=Unicode, config=True)
    notebook_port = Int(config=True)
    notebook_scheme = Unicode(config=True)
    notebook_args = List(trait=Unicode, config=True)

    authentication_class = Type(FargateSpawnerAuthentication, config=True)
    authentication = Instance(FargateSpawnerAuthentication)

    @default('authentication')
    def _default_authentication(self):
        return self.authentication_class(parent=self)

    task_arn = Unicode('')

    # We mostly are able to call the AWS API to determine status. However, when we yield the
    # event loop to create the task, if there is a poll before the creation is complete,
    # we must behave as though we are running/starting, but we have no IDs to use with which
    # to check the task.
github SuperMap / iclient-python / jupyter / iclientpy / jupyter / widget.py View on Github external
    @validate('map_v_options')
    def _validate_map_v_options(self, proposal):
        self.size = proposal['value']['size'] if 'size' in proposal['value']else 5
        self.global_alpha = proposal['value']['globalAlpha'] if 'globalAlpha' in proposal['value'] else 1
        self.fill_style = proposal['value']['fillStyle'] if 'fillStyle' in proposal['value'] else'#3732FA'
        self.shadow_color = proposal['value']['shadowColor'] if 'shadowColor' in proposal['value'] else'#FFFA32'
        self.shadow_blur = proposal['value']['shadowBlur'] if 'shadowBlur' in proposal['value'] else 35
        # self.line_width = proposal['value']['lineWidth'] if 'lineWidth' in proposal['value'] else 4
        return proposal['value']

    size = Int().tag(sync=True)
    global_alpha = Float().tag(sync=True)
    fill_style = Unicode('').tag(sync=True)
    shadow_color = Unicode('').tag(sync=True)
    shadow_blur = Int().tag(sync=True)

    # line_width = Int(4).tag(sync=True)

    def interact(self):
        sizeslider = IntSlider(value=self.size,
                               min=0,
                               max=100,
                               step=1,
                               description='大小:',
                               disabled=False,
                               continuous_update=False,
                               orientation='horizontal',
                               readout=True,
                               readout_format='d',
                               layout=Layout(width="350px"))
        link((sizeslider, 'value'), (self, 'size'))
github jupyter / notebook / ipython_widgets / widgets / widget.py View on Github external
# Traits
    #-------------------------------------------------------------------------
    _model_module = Unicode(None, allow_none=True, help="""A requirejs module name
        in which to find _model_name. If empty, look in the global registry.""")
    _model_name = Unicode('WidgetModel', help="""Name of the backbone model 
        registered in the front-end to create and sync this widget with.""")
    _view_module = Unicode(help="""A requirejs module in which to find _view_name.
        If empty, look in the global registry.""", sync=True)
    _view_name = Unicode(None, allow_none=True, help="""Default view registered in the front-end
        to use to represent the widget.""", sync=True)
    comm = Instance('ipython_kernel.comm.Comm', allow_none=True)
    
    msg_throttle = Int(3, sync=True, help="""Maximum number of msgs the 
        front-end can send before receiving an idle msg from the back-end.""")
    
    version = Int(0, sync=True, help="""Widget's version""")
    keys = List()
    def _keys_default(self):
        return [name for name in self.traits(sync=True)]
    
    _property_lock = Tuple((None, None))
    _send_state_lock = Int(0)
    _states_to_send = Set()
    _display_callbacks = Instance(CallbackDispatcher, ())
    _msg_callbacks = Instance(CallbackDispatcher, ())
    
    #-------------------------------------------------------------------------
    # (Con/de)structor
    #-------------------------------------------------------------------------
    def __init__(self, **kwargs):
        """Public constructor"""
        self._model_id = kwargs.pop('model_id', None)
github WHUIR / DAZER / model.py View on Github external
for b in range(len(D)):
            for q in range(len(D[b])):
                if D[b][q] > 0:
                    mask[b][q] = 1

        return mask

class DAZER(BaseNN):
    #params of zeroshot document filtering model
    embedding_size = Int(300, help="embedding dimension").tag(config=True)
    vocabulary_size = Int(2000000, help="vocabulary size").tag(config=True)
    kernal_width = Int(5, help='kernal width').tag(config=True)
    kernal_num = Int(50, help='number of kernal').tag(config=True)
    regular_term = Float(0.01, help='param for controlling wight of L2 loss').tag(config=True)
    maxpooling_num = Int(3, help='number of k-maxpooling').tag(config=True)
    decoder_mlp1_num = Int(75, help='number of hidden units of first mlp in relevance aggregation part').tag(config=True)
    decoder_mlp2_num = Int(1, help='number of hidden units of second mlp in relevance aggregation part').tag(config=True)
    emb_in = Unicode('None', help="initial embedding. Terms should be hashed to ids.").tag(config=True)
    model_learning_rate = Float(0.001, help="learning rate of model").tag(config=True)
    adv_learning_rate = Float(0.001, help='learning rate of adv classifier').tag(config=True)
    epsilon = Float(0.00001, help="Epsilon for Adam").tag(config=True)
    label_dict_path = Unicode('None', help='label dict path').tag(config=True)
    word2id_path = Unicode('None', help='word2id path').tag(config=True)
    train_class_num = Int(16, help='num of class in training data').tag(config=True)
    adv_term = Float(0.2, help='regular term of adversrial loss').tag(config=True)
    zsl_num = Int(1, help='num of zeroshot label').tag(config=True)
    zsl_type = Int(1, help='type of zeroshot label setting').tag(config=True)

    def __init__(self, **kwargs):
        #init the DAZER model
        super(DAZER, self).__init__(**kwargs)
        print ("trying to load initial embeddings from:  ", self.emb_in)
github jupyter-widgets / ipyleaflet / ipyleaflet / leaflet.py View on Github external
# Specification of the basemap
    basemap = Dict(default_value=dict(
            url='https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png',
            max_zoom=19,
            attribution='Map data (c) <a href="https://openstreetmap.org">OpenStreetMap</a> contributors'
        )).tag(sync=True, o=True)
    modisdate = Unicode('yesterday').tag(sync=True)

    # Interaction options
    dragging = Bool(True).tag(sync=True, o=True)
    touch_zoom = Bool(True).tag(sync=True, o=True)
    scroll_wheel_zoom = Bool(False).tag(sync=True, o=True)
    double_click_zoom = Bool(True).tag(sync=True, o=True)
    box_zoom = Bool(True).tag(sync=True, o=True)
    tap = Bool(True).tag(sync=True, o=True)
    tap_tolerance = Int(15).tag(sync=True, o=True)
    world_copy_jump = Bool(False).tag(sync=True, o=True)
    close_popup_on_click = Bool(True).tag(sync=True, o=True)
    bounce_at_zoom_limits = Bool(True).tag(sync=True, o=True)
    keyboard = Bool(True).tag(sync=True, o=True)
    keyboard_pan_offset = Int(80).tag(sync=True, o=True)
    keyboard_zoom_offset = Int(1).tag(sync=True, o=True)
    inertia = Bool(True).tag(sync=True, o=True)
    inertia_deceleration = Int(3000).tag(sync=True, o=True)
    inertia_max_speed = Int(1500).tag(sync=True, o=True)
    # inertia_threshold = Int(?, o=True).tag(sync=True)
    # fade_animation = Bool(?).tag(sync=True, o=True)
    # zoom_animation = Bool(?).tag(sync=True, o=True)
    zoom_animation_threshold = Int(4).tag(sync=True, o=True)
    # marker_zoom_animation = Bool(?).tag(sync=True, o=True)
    fullscreen = Bool(False).tag(sync=True, o=True)
github allenai / citeomatic / citeomatic / models / options.py View on Github external
total_samples = Int(default_value=5000000)
    reduce_lr_flag = Bool(default_value=False)

    # regularization params for embedding layer: l1 for mag/sparse, l2 for dir
    l2_lambda = Float(default_value=0.00001)
    l1_lambda = Float(default_value=0.0000001)
    dropout_p = Float(default_value=0)
    use_magdir = Bool(default_value=True)

    # params for TextEmbeddingConv
    kernel_width = Int(default_value=5)
    stride = Int(default_value=2)

    # params for TextEmbeddingConv2
    filters = Int(default_value=100) # default in the paper
    max_kernel_size = Int(default_value=5) # we use 2, 3, 4, 5. paper uses 3, 4, 5

    # dense layers
    dense_config = Unicode(default_value='20,20')

    num_ann_nbrs_to_fetch = Int(default_value=100)
    num_candidates_to_rank = Int(default_value=100) # No. of candidates to fetch from ANN at eval time
    extend_candidate_citations = Bool(default_value=True) # Whether to include citations of ANN
    # similar docs as possible candidates or not

    use_pretrained = Bool(default_value=False)
    num_oov_buckets = 100 # for hashing out of vocab terms
    dense_dim_pretrained = 300 # just a fact - don't change
    oov_term_prefix = '#OOV_'
    subset_vocab_to_training = False

    # minimum number of papers for authors/venues/keyphrases to get an embedding.
github cta-observatory / ctapipe / ctapipe / image / extractor.py View on Github external
peak_index,
            self.window_width.tel[telid],
            self.window_shift.tel[telid],
            self.sampling_rate[telid],
        )
        charge *= self._calculate_correction(telid=telid)[selected_gain_channel]
        return charge, peak_time


class BaselineSubtractedNeighborPeakWindowSum(NeighborPeakWindowSum):
    """
    Extractor that first subtracts the baseline before summing in a
    window about the peak defined by the wavefroms in neighboring pixels.
    """

    baseline_start = Int(0, help="Start sample for baseline estimation").tag(
        config=True
    )
    baseline_end = Int(10, help="End sample for baseline estimation").tag(config=True)

    def __call__(self, waveforms, telid, selected_gain_channel):
        baseline_corrected = subtract_baseline(
            waveforms, self.baseline_start, self.baseline_end
        )
        return super().__call__(baseline_corrected, telid, selected_gain_channel)


class TwoPassWindowSum(ImageExtractor):
    """Extractor based on [1]_ which integrates the waveform a second time using
    a time-gradient linear fit. This is in particular the version implemented
    in the CTA-MARS analysis pipeline [2]_.
github hansohn / jupyterhub-ldap-authenticator / ldapauthenticator / ldapauthenticator.py View on Github external
class LDAPAuthenticator(Authenticator):
    """
    LDAP Authenticator for Jupyterhub
    """

    server_hosts = Union(
        [List(), Unicode()],
        config=True,
        help="""
        List of Names, IPs, or the complete URLs in the scheme://host:port
        format of the server (required).
        """
    )

    server_port = Int(
        allow_none=True,
        default_value=None,
        config=True,
        help="""
        The port where the LDAP server is listening. Typically 389, for a
        cleartext connection, and 636 for a secured connection (defaults to None).
        """
    )

    server_use_ssl = Bool(
        default_value=False,
        config=True,
        help="""
        Boolean specifying if the connection is on a secure port (defaults to False).
        """
    )