Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Other attributes
x = (Float(0.5) | Date() | Unicode()).tag(sync=True)
y = (Float(0.5) | Date() | Unicode()).tag(sync=True)
scales_metadata = Dict({'color': {'dimension': 'color'}}).tag(sync=True)
sort = Bool().tag(sync=True)
colors = List(trait=Color(default_value=None, allow_none=True),
default_value=CATEGORY10).tag(sync=True,
display_name='Colors')
stroke = Color(None, allow_none=True).tag(sync=True)
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
.tag(sync=True, display_name='Opacities')
radius = Float(180.0, min=0.0, max=float('inf')).tag(sync=True)
inner_radius = Float(0.1, min=0.0, max=float('inf')).tag(sync=True)
start_angle = Float().tag(sync=True)
end_angle = Float(360.0).tag(sync=True)
display_labels = Enum(['none', 'inside', 'outside'],
default_value='inside').tag(sync=True)
display_values = Bool(False).tag(sync=True)
values_format = Unicode(default_value='.1f').tag(sync=True)
label_color = Color(None, allow_none=True).tag(sync=True)
font_size = Unicode(default_value='12px').tag(sync=True)
font_weight = Enum(['bold', 'normal', 'bolder'],
default_value='normal').tag(sync=True)
_view_name = Unicode('Pie').tag(sync=True)
_model_name = Unicode('PieModel').tag(sync=True)
def topo_load(name):
with open(os.path.join(os.path.split(os.path.realpath(__file__))[0],
name)) as data_file:
For debugging only. Draws the model in wireframe.
"""
_props = ['url', 'basePath', 'show', 'modelMatrix', 'scale',
'minimumPixelSize', 'maximumScale', 'id', 'allowPicking',
'incrementallyLoadTextures', 'asynchronous',
'debugShowBoundingVolume', 'debugWireframe']
url = URITrait()
modelMatrix = traitlets.Instance(klass=Transforms)
basePath = traitlets.Unicode(allow_none=True)
show = traitlets.Bool(allow_none=True)
scale = traitlets.Float(allow_none=True)
minimumPixelSize = traitlets.Float(allow_none=True)
maximumScale = traitlets.Float(allow_none=True)
allowPicking = traitlets.Bool(allow_none=True)
incrementallyLoadTextures = traitlets.Bool(allow_none=True)
asynchronous = traitlets.Bool(allow_none=True)
debugShowBoundingVolume = traitlets.Bool(allow_none=True)
debugWireframe = traitlets.Bool(allow_none=True)
def __init__(self, url, modelMatrix, basePath=None, show=None,
scale=None, minimumPixelSize=None, maximumScale=None,
id=None, allowPicking=None, incrementallyLoadTextures=None,
asynchronous=None, debugShowBoundingVolume=None,
debugWireframe=None):
self.url = url
self.modelMatrix = Transforms.eastNorthUpToFixedFrame(modelMatrix)
scale_types: dict (class-level attribute)
A registry of existing scale types.
domain_class: type (default: Float)
traitlet type used to validate values in of the domain of the scale.
reverse: bool (default: False)
whether the scale should be reversed.
allow_padding: bool (default: True)
indicates whether figures are allowed to add data padding to this scale
or not.
precedence: int (class-level attribute)
attribute used to determine which scale takes precedence in cases when
two or more scales have the same rtype and dtype.
"""
scale_types = {}
precedence = 1
domain_class = Type(Float)
reverse = Bool().tag(sync=True)
allow_padding = Bool(True).tag(sync=True)
_view_name = Unicode('Scale').tag(sync=True)
_model_name = Unicode('ScaleModel').tag(sync=True)
_view_module = Unicode('bqplot').tag(sync=True)
_model_module = Unicode('bqplot').tag(sync=True)
_view_module_version = Unicode(__frontend_version__).tag(sync=True)
_model_module_version = Unicode(__frontend_version__).tag(sync=True)
_ipython_display_ = None # We cannot display a scale outside of a figure
class GeoScale(Scale):
"""The base projection scale class for Map marks.
from traitlets.config import LoggingConfigurable
from ..utils import MemoryLimit, TaskPool
class ClusterManager(LoggingConfigurable):
"""Base class for dask cluster managers"""
environment = Dict(
help="""
Environment variables to set for both the worker and scheduler processes.
""",
config=True,
)
cluster_start_timeout = Float(
60,
help="""
Timeout (in seconds) before giving up on a starting dask cluster.
""",
config=True,
)
cluster_status_period = Float(
30,
help="""
Time (in seconds) between cluster status checks.
A smaller period will detect failed clusters sooner, but will use more
resources. A larger period will provide slower feedback in the presence
of failures.
""",
#: (str) Global composite operation, possible values are listed below:
#: https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Compositing#globalCompositeOperation
global_composite_operation = Enum(
['source-over', 'source-in', 'source-out', 'source-atop',
'destination-over', 'destination-in', 'destination-out',
'destination-atop', 'lighter', 'copy', 'xor', 'multiply',
'screen', 'overlay', 'darken', 'lighten', 'color-dodge',
'color-burn', 'hard-light', 'soft-light', 'difference',
'exclusion', 'hue', 'saturation', 'color', 'luminosity'],
default_value='source-over'
)
#: (float) Indicates the horizontal distance the shadow should extend from the object.
#: This value isn't affected by the transformation matrix. The default is 0.
shadow_offset_x = Float(0.0)
#: (float) Indicates the vertical distance the shadow should extend from the object.
#: This value isn't affected by the transformation matrix. The default is 0.
shadow_offset_y = Float(0.0)
#: (float) Indicates the size of the blurring effect; this value doesn't correspond to a number of pixels
#: and is not affected by the current transformation matrix. The default value is 0.
shadow_blur = Float(0.0)
#: (valid HTML color) A standard CSS color value indicating the color of the shadow effect; by default,
#: it is fully-transparent black.
shadow_color = Color('rgba(0, 0, 0, 0)')
#: (float) Sets the width of lines drawn in the future, must be a positive number. Default to ``1.0``.
line_width = Float(1.0)
async def poll(self):
"""Poll the process"""
if self.job_id is not None and len(self.job_id) > 0:
await self.read_job_state()
if self.state_isrunning() or self.state_ispending():
return None
else:
self.clear_state()
return 1
if not self.job_id:
# no job id means it's not running
self.clear_state()
return 1
startup_poll_interval = Float(0.5,
help="Polling interval (seconds) to check job state during startup"
).tag(config=True)
async def start(self):
"""Start the process"""
self.ip = self.traits()['ip'].default_value
self.port = self.traits()['port'].default_value
if jupyterhub.version_info >= (0,8) and self.server:
self.server.port = self.port
job = await self.submit_batch_script()
# We are called with a timeout, and if the timeout expires this function will
# be interrupted at the next yield, and self.stop() will be called.
# So this function should not return unless successful, and if unsuccessful
use_dense = Bool(default_value=True)
use_citations = Bool(default_value=True)
use_sparse = Bool(default_value=True)
use_src_tgt_embeddings = Bool(default_value=False)
use_metadata = Bool(default_value=True)
use_authors = Bool(default_value=False)
use_venue = Bool(default_value=False)
use_keyphrases = Bool(default_value=False)
# training and feature params
optimizer = Unicode(default_value='tfopt')
lr = Float(default_value=0.0001)
use_nn_negatives = Bool(default_value=True)
margin_multiplier = Float(default_value=1)
use_variable_margin = Bool(default_value=True)
train_frac = Float(default_value=0.8) # the rest will be divided 50/50 val/test
max_features = Int(default_value=200000)
max_title_len = Int(default_value=50)
max_abstract_len = Int(default_value=500)
neg_to_pos_ratio = Int(default_value=6) # ideally divisible by 2 and 3
batch_size = Int(default_value=512)
samples_per_epoch = Int(default_value=1000000)
total_samples = Int(default_value=5000000)
reduce_lr_flag = Bool(default_value=False)
# regularization params for embedding layer: l1 for mag/sparse, l2 for dir
l2_lambda = Float(default_value=0.00001)
l1_lambda = Float(default_value=0.0000001)
dropout_p = Float(default_value=0)
use_magdir = Bool(default_value=True)
# params for TextEmbeddingConv
agent_type = Enum(
default_value=Circular,
values=(Circular, ThreeCircle))
body_type = Enum(
default_value='adult',
values=('adult',))
width = Float(
default_value=10.0,
min=0)
height = Float(
default_value=10.0,
min=0)
exit_width = Float(
default_value=1.25,
min=0, max=10)
ratio_obs = Float(
default_value=0.6,
min=0, max=1)
def attributes(self, has_target: bool=True, is_follower: bool=False):
def wrapper():
rand_target = np.random.randint(0, len(self.field.targets))
target = rand_target if has_target else NO_TARGET
orientation = np.random.uniform(-np.pi, np.pi)
d = dict(
target=target,
is_leader=not is_follower,
is_follower=is_follower,
body_type=self.body_type,
orientation=orientation,
velocity=np.zeros(2),
angular_velocity=0.0,
super(GeoData, self).__init__(**kwargs)
self.data = self._get_data()
@observe('geo_dataframe')
def _update_data(self, change):
self.data = self._get_data()
def _get_data(self):
return json.loads(self.geo_dataframe.to_json())
class Choropleth(GeoJSON):
geo_data = Dict()
choro_data = Dict()
value_min = Float(None, allow_none=True)
value_max = Float(None, allow_none=True)
colormap = Instance(ColorMap)
border_color = Color('black')
@observe('choro_data')
def _update_bounds(self, change):
self.value_min = min(self.choro_data.items(), key=lambda x: x[1])[1]
self.value_max = max(self.choro_data.items(), key=lambda x: x[1])[1]
@observe('value_min', 'value_max', 'geo_data', 'choro_data', 'colormap', 'border_color')
def _update_data(self, change):
self.data = self._get_data()
@default('colormap')
def _default_colormap(self):
return linear.OrRd_06
margin_multiplier = Float(default_value=1)
use_variable_margin = Bool(default_value=True)
train_frac = Float(default_value=0.8) # the rest will be divided 50/50 val/test
max_features = Int(default_value=200000)
max_title_len = Int(default_value=50)
max_abstract_len = Int(default_value=500)
neg_to_pos_ratio = Int(default_value=6) # ideally divisible by 2 and 3
batch_size = Int(default_value=512)
samples_per_epoch = Int(default_value=1000000)
total_samples = Int(default_value=5000000)
reduce_lr_flag = Bool(default_value=False)
# regularization params for embedding layer: l1 for mag/sparse, l2 for dir
l2_lambda = Float(default_value=0.00001)
l1_lambda = Float(default_value=0.0000001)
dropout_p = Float(default_value=0)
use_magdir = Bool(default_value=True)
# params for TextEmbeddingConv
kernel_width = Int(default_value=5)
stride = Int(default_value=2)
# params for TextEmbeddingConv2
filters = Int(default_value=100) # default in the paper
max_kernel_size = Int(default_value=5) # we use 2, 3, 4, 5. paper uses 3, 4, 5
# dense layers
dense_config = Unicode(default_value='20,20')
num_ann_nbrs_to_fetch = Int(default_value=100)
num_candidates_to_rank = Int(default_value=100) # No. of candidates to fetch from ANN at eval time
extend_candidate_citations = Bool(default_value=True) # Whether to include citations of ANN