Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
Parameters
----------
seq: int
the sequence number.
idx: int
the frame number.
Returns
-------
np.array
the image.
"""
seq_dir = join(dreyeve_root, 'DATA', '{:02d}'.format(seq), 'frames')
img = io.imread(join(seq_dir, '{:06d}.jpg'.format(idx)))
img = resize(img, output_shape=(1080 // 2, 1920 // 2), mode='constant', preserve_range=True)
return np.uint8(img)
directory = '/data/research/object-detection/malaria/data/'
dictionary = []
for t in ['training', 'validation', 'test']:
dictionary_t = []
dir_ = os.path.join(directory, 'images', t)
image_files = glob.glob(os.path.join(dir_,"*"))
for image_file in image_files:
x = {}
x['filepath'] = os.path.basename(image_file)
image = skimage.io.imread(image_file)
x['width'] = image.shape[0]
x['height'] = image.shape[1]
basename, imagename = image_file.split('/images/')
label_file = os.path.join(basename, 'labels', imagename.rsplit('.')[0] + '.xml')
x['bboxes'] = get_data(label_file)
dictionary_t.append(x)
dictionary.append(dictionary_t)
return dictionary
P.add_argument('--detectmodelfile', type=str, required=True, help='face detect model file')
P.add_argument('--input', type=str, required=True, help='input image file')
args = P.parse_args()
fa = FaceAlignment(modelfilename=args.modelfile, facedetectmodelfile=args.detectmodelfile)
if fa:
img_in = io.imread(args.input)
img = img_in
preds, detected_faces, preds_in_crops, img_crops = fa.get_landmarks(img)
for k,d in enumerate(detected_faces):
cv2.rectangle(img_in,(d[0],d[1]),(d[2],d[3]),(255,255,255))
landmark = preds[k]
for i in range(landmark.shape[0]):
pts = landmark[i]
cv2.circle(img_in, (pts[0], pts[1]),5,(0,255,0), -1, 8)
cv2.putText(img_in,str(i),(pts[0],pts[1]),cv2.FONT_HERSHEY_SIMPLEX,0.5,(255,2555,255))
io.imsave('res.jpg',img_in)
else:
print("FaceAlignment init error!")
def __init__(self, body='./body/body_masscat.png', **options):
super().__init__('量産型のらきゃっと', body=body, pantie_position=[2590, 1047], **options)
self.mask = io.imread('./mask/mask_masscat.png')
try:
self.with_skin = self.options['with_skin']
except:
self.with_skin = self.ask(question='Overlay with skin?', default=True)
if self.with_skin:
self.skin = Image.open('./material/skin_masscat.png')
try:
self.with_socks = self.options['with_socks']
except:
self.with_socks = self.ask(question='Wear socks?', default=True)
if self.with_socks:
try:
self.is_knee = self.options['is_knee']
except:
self.is_knee = self.ask(question='Knee socks?', default=True)
if self.is_knee:
def load_image(self, image_id):
"""Load the specified image and return a [H,W,3] Numpy array.
"""
print(self.image_info[image_id]['path'])
# Load image
image = skimage.io.imread(self.image_info[image_id]['path'])
# If grayscale. Convert to RGB for consistency.
if image.ndim != 3:
image = skimage.color.gray2rgb(image)
return image
r, c = 224, 224
for group in groups:
dictionaries = []
for _ in range(256):
identifier = uuid.uuid4()
image, objects = skimage.draw.random_shapes((r, c), 32, 2, 32)
filename = "{}.png".format(identifier)
pathname = os.path.join("images", filename)
skimage.io.imsave(pathname, image)
if os.path.exists(pathname):
dictionary = {
"image": {
"checksum": md5sum(pathname),
"pathname": pathname,
"shape": {
"r": r,
"c": c,
"channels": 3
}
},
"objects": []
}
for category, (bounding_box_r, bounding_box_c) in objects:
fig = plt.subplot(2, 2, 2)
fig.set_title("Evolution of recall and precision - P@{}={}".format(K, avg_pre[i]))
ax = fig.axes
ax.plot(recall, color='Red')
ax.set_ylabel('Recall', color='Red')
ax.tick_params(axis='y', colors='Red')
ax = fig.axes.twinx()
ax.plot(precision, color='Blue')
ax.set_ylabel('Precision', color='Blue')
ax.tick_params(axis='y', colors='Blue', direction='out')
for i in range(10):
fig = plt.subplot(4,5,11+i)
fig.set_title("result "+str(i+1))
fig = plt.imshow(io.imread(os.path.join(data_path, ranked_results[i][0])))
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
print relevance
print cumsum_relevance
print precision
print recall
plt.show()
mean_avg_pre[a,b] = avg_pre.mean()
print mean_avg_pre
mean_avg_pre.tofile('map.csv',sep=',',format='%10.8f')
def read_image(filename):
img = io.imread(filename)
img = np.array(img).transpose(2, 0, 1)
img = np.expand_dims(img, axis=0)
return img
# '''
# Detector returns a mmod_rectangles object containing a list of mmod_rectangle objects, which are accessed by
# iterating over the mmod_rectangles object. mmod_rectangle has 2 members, dlib.rectangle object & confidence score.
#
# It is possible to pass a list of images to the detector.
# - like this: dets = cnn_face_detector([image list], upsample_num, batch_size = 128)
# In this case it will return a mmod_rectangless object.
# This object behaves just like a list of lists and can be iterated over.
# '''
predictor_path = "shape_predictor_68_face_landmarks.dat"
sp = dlib.shape_predictor(predictor_path)
print("Number of faces detected: {}".format(len(dets)))
counter = 0
for faces, prefix in zip(dets, f_prefix):
img = io.imread(counter)
for i, d in enumerate(faces):
f_name = prefix + str(i)
df.loc[counter] = [fids[counter], pids[counter], i, f_name, d.rect.left(), d.rect.top(), d.rect.right(),
d.rect.bottom(), d.confidence]
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {} Confidence: {}".format(
i, d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom(), d.confidence))
shape = sp(img, d)
dlib.save_face_chip(img, shape, dir_det_out + f_name + ".jpg")
counter += 1
df.to_csv("dnn_face_detections_bb_2.csv")
def PreprocessStyleImage(path, shape):
img = io.imread(path)
resized_img = transform.resize(img, (shape[2], shape[3]))
sample = np.asarray(resized_img) * 256
sample = np.swapaxes(sample, 0, 2)
sample = np.swapaxes(sample, 1, 2)
sample[0, :] -= 123.68
sample[1, :] -= 116.779
sample[2, :] -= 103.939
return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2]))