How to use the skimage.color.rgb2gray function in skimage

To help you get started, we’ve selected a few skimage examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github symoon94 / DRQN-keras / breakout_drqn / breakout_drqn15.py View on Github external
def pre_processing(observe):

    processed_observe = np.uint8(

        resize(rgb2gray(observe), ( 84, 84 ), mode='constant') * 255)

    return processed_observe
github DigitalSlideArchive / HistomicsTK / histomicstk / saliency / cellularity_detection.py View on Github external
def set_superpixel_mask(self):
        """Use Simple Linear Iterative Clustering (SLIC) to get superpixels."""
        # Get superpixel size and number
        spixel_size = self.cd.spixel_size_baseMag * (
            self.cd.MAG / self.cd.slide_info['magnification'])
        n_spixels = int(
            self.tissue_rgb.shape[0] * self.tissue_rgb.shape[1] / spixel_size)

        # get superpixel mask
        # optionally use grayscale instead of RGB -- seems more robust to
        # color variations and sometimes gives better results
        if self.cd.use_grayscale:
            self.spixel_mask = slic(
                rgb2gray(self.tissue_rgb), n_segments=n_spixels,
                compactness=self.cd.compactness)
        else:
            self.spixel_mask = slic(
                self.tissue_rgb, n_segments=n_spixels,
                compactness=self.cd.compactness)

        # restrict to tissue mask
        tmask = resize(
            self.tissue_mask, output_shape=self.spixel_mask.shape,
            order=0, preserve_range=True)
        self.spixel_mask[tmask == 0] = 0
github ifp-uiuc / do-neural-networks-learn-faus-iccvw-2015 / data_scripts / make_ck_plus_dataset.py View on Github external
def process_single_image(self, image_file_path, output_img_size):
            # Read in the image
            I = skimage.io.imread(image_file_path)

            # If image was in color:
            if len(I.shape) == 3:
                I = skimage.color.rgb2gray(I)
                I *= 255
                I = I.astype('uint8')

            if len(I.shape) != 3:
                I = I[:, :, numpy.newaxis]

            # Detect face and crop it out
            I_crop, success_flag = self.detect_crop_face(I)
            #print I_crop.dtype, I_crop.min(), I_crop.max()

            # If face was successfully detected.
            # Align face in 96x96 image
            if success_flag:
                I_out = I_crop
                I_out = numpy.uint8(skimage.transform.resize(I_out, (96, 96), preserve_range=True))
                #print I_out.dtype, I_out.min(), I_out.max()
github charliememory / Disentangled-Person-Image-Generation / trainer.py View on Github external
def generate(self, x_fixed, x_target_fixed, pose_fixed, part_bbox_fixed, part_vis_fixed, root_path=None, path=None, idx=None, save=True):
        G = self.sess.run(self.G, {self.x: x_fixed, self.pose: pose_fixed, self.part_bbox: part_bbox_fixed, self.part_vis: part_vis_fixed})
        ssim_G_x_list = []
        for i in xrange(G.shape[0]):
            G_gray = rgb2gray((G[i,:]).clip(min=0,max=255).astype(np.uint8))
            x_gray = rgb2gray(((x_fixed[i,:]+1)*127.5).clip(min=0,max=255).astype(np.uint8))
            ssim_G_x_list.append(ssim(G_gray, x_gray, data_range=x_gray.max() - x_gray.min(), multichannel=False))
        ssim_G_x_mean = np.mean(ssim_G_x_list)
        if path is None and save:
            path = os.path.join(root_path, '{}_G_ssim{}.png'.format(idx,ssim_G_x_mean))
            save_image(G, path)
            print("[*] Samples saved: {}".format(path))
        return G
github charliememory / Pose-Guided-Person-Image-Generation / trainer.py View on Github external
def generate(self, x_fixed, x_target_fixed, pose_target_fixed, root_path=None, path=None, idx=None, save=True):
        G = self.sess.run(self.G, {self.x: x_fixed, self.pose_target: pose_target_fixed})
        ssim_G_x_list = []
        # x_0_255 = utils_wgan.unprocess_image(x_target_fixed, 127.5, 127.5)
        for i in xrange(G.shape[0]):
            # G_gray = rgb2gray((G[i,:]/127.5-1).clip(min=-1,max=1))
            # x_target_gray = rgb2gray((x_target_fixed[i,:]).clip(min=-1,max=1))
            G_gray = rgb2gray((G[i,:]).clip(min=0,max=255).astype(np.uint8))
            x_target_gray = rgb2gray(((x_target_fixed[i,:]+1)*127.5).clip(min=0,max=255).astype(np.uint8))
            ssim_G_x_list.append(ssim(G_gray, x_target_gray, data_range=x_target_gray.max() - x_target_gray.min(), multichannel=False))
        ssim_G_x_mean = np.mean(ssim_G_x_list)
        if path is None and save:
            path = os.path.join(root_path, '{}_G_ssim{}.png'.format(idx,ssim_G_x_mean))
            save_image(G, path)
            print("[*] Samples saved: {}".format(path))
        return G
github borgwang / reinforce_py / algorithms / A3C / atari / atari_env_deprecated.py View on Github external
def preprocess(self, observ):
        return resize(rgb2gray(observ), self.screen_size)
github HarleysZhang / detect_steel_number / samples / gangjin / gangjin.py View on Github external
def color_splash(image, mask):
    """Apply color splash effect.
    image: RGB image [height, width, 3]
    mask: instance segmentation mask [height, width, instance count]

    Returns result image.
    """
    # Make a grayscale copy of the image. The grayscale copy still
    # has 3 RGB channels, though.
    gray = skimage.color.gray2rgb(skimage.color.rgb2gray(image)) * 255
    # Copy color pixels from the original color image where mask is set
    if mask.shape[-1] > 0:
        # We're treating all instances as one, so collapse the mask into one layer
        mask = (np.sum(mask, -1, keepdims=True) >= 1)
        splash = np.where(mask, image, gray).astype(np.uint8)
    else:
        splash = gray.astype(np.uint8)
    return splash
github oduwa / Pic-Numero / PicNumero / RAG_threshold.py View on Github external
def extract_roi(img, labels_to_keep=[1,2]):
    label_img = segmentation.slic(img, compactness=30, n_segments=6)
    labels = np.unique(label_img);print(labels)
    gray = rgb2gray(img);

    for label in labels:
        if(label not in labels_to_keep):
            logicalIndex = (label_img == label)
            gray[logicalIndex] = 0;

    Display.show_image(gray)
    io.imsave("grayy.png", gray)
github Grzego / async-rl / a3c / play.py View on Github external
def transform_screen(self, data):
        return rgb2gray(imresize(data, self.screen))[None, ...]
github prip-lab / MSU-LatentAFIS / extraction / Latent_minutiae.py View on Github external
def feature_extraction_single_rolled(self,img_file, output_path=None,ppi=500):
        block_size = 16

        if not os.path.exists(img_file):
            return None
        img = io.imread(img_file,s_grey=True)
        if ppi!=500:
            img = cv2.resize(img, (0, 0), fx=500.0/ppi, fy=500.0/ppi)

        img = preprocessing.adjust_image_size(img, block_size)
        if len(img.shape)>2:
            img = rgb2gray(img)
        h, w = img.shape
        start = timeit.default_timer()
        mask = get_maps.get_quality_map_intensity(img)
        stop = timeit.default_timer()
        print('time for cropping : %f' % (stop - start))
        start = timeit.default_timer()
        contrast_img = preprocessing.local_constrast_enhancement(img)
        mnt = self.minu_model.run_whole_image(contrast_img, minu_thr=0.1)
        stop = timeit.default_timer()
        minu_time = stop - start
        print('time for minutiae : %f' % (stop - start))

        name = os.path.basename(img_file)
        show.show_minutiae(img,mnt,block=True)
        return None