Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
#nx.draw(G)
# Judge whether remove the isolated point from graph
if remove_isolated is True:
H = nx.empty_graph()
for SG in nx.connected_component_subgraphs(G):
if SG.number_of_nodes() > iso_level:
H = nx.union(SG, H)
G = H
# Ajust graph for better presentation
if different_size is True:
L = nx.degree(G)
G.dot_size = {}
for k, v in L.items():
G.dot_size[k] = v
node_size = [G.dot_size[v] * 10 for v in G]
pos = nx.spring_layout(G, iterations=50)
nx.draw_networkx_edges(G, pos, alpha=0.2)
nx.draw_networkx_nodes(G, pos, node_size=node_size, node_color='r', alpha=0.3)
# Judge whether shows label
if label_flag is True:
nx.draw_networkx_labels(G, pos, alpha=0.5)
#nx.draw_graphviz(G)
plt.show()
return G
def peek(self):
import matplotlib
matplotlib.use('Qt5Agg')
import matplotlib.pyplot as plt
self._declare_buscoords()
stpos = {x: y for x, y in self.bus_coords().items() if y is not None}
if stpos == {}:
posi = nx.spring_layout(self.graph())
else:
posi = nx.spring_layout(self.graph(), pos=stpos, fixed=stpos)
nx.draw_networkx(self.graph(), pos=posi)
plt.show()
def _calculate_pos(self, graph):
if self.layout == 'layered': # only DAGs
try:
pos = layered_layout(graph)
except:
display_error("Layered layout cannot be created!")
pos = None
elif self.layout == 'spring':
pos = nx.spring_layout(graph)
elif self.layout == 'circular':
pos = nx.circular_layout(graph)
elif self.layout == 'random':
pos = nx.random_layout(graph)
else:
pos = None # which gives 'spring' layout...
return pos
nonexecutive JJ 15 NMOD
director NN 12 PMOD
Nov. NNP 9 VMOD
29 CD 16 NMOD
. . 9 VMOD
""")
tree = dg.tree()
tree.pprint()
if nx:
# currently doesn't work
import networkx
from matplotlib import pylab
g = dg.nx_graph()
g.info()
pos = networkx.spring_layout(g, dim=1)
networkx.draw_networkx_nodes(g, pos, node_size=50)
# networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
networkx.draw_networkx_labels(g, pos, dg.nx_labels)
pylab.xticks([])
pylab.yticks([])
pylab.savefig('tree.png')
pylab.show()
def plotVine(self, plotAll=True, savefig=None):
"""!
@brief Plots the vine's graph structure.
@param plotAll (optional) Plot the entire vine structure
@param savefig (optional) filename of output image.
"""
plt.figure(10, figsize=(6 + 0.3 * self.nLevels, 3 * self.nLevels))
for i, treeL in enumerate(self.vine):
plt.subplot(self.nLevels, 1, i + 1)
plt.title("Tree Level: %d" % i)
pos = nx.spring_layout(treeL.tree)
nx.draw(treeL.tree, pos, with_labels=True, font_size=10, font_weight="bold")
# specifiy edge labels explicitly
edge_labels = dict([((u, v,), round(d['weight'], 2))
for u, v, d in treeL.tree.edges(data=True)])
nx.draw_networkx_edge_labels(treeL.tree, pos, edge_labels=edge_labels)
if savefig is not None:
plt.savefig(savefig)
plt.close(10)
def plot_graph(self):
import matplotlib.pyplot as plt
pos=networkx.spring_layout(self.G,iterations=2000)
#pos=networkx.spectral_layout(G)
#pos = networkx.random_layout(G)
networkx.draw_networkx_nodes(self.G, pos)
networkx.draw_networkx_edges(self.G, pos, arrows=True)
networkx.draw_networkx_labels(self.G, pos)
plt.show()
true_users[u['user']['id']] = str(u['user']['screen_name'])
colors[str(u['user']['screen_name'])] = 0
if u['user']['id'] == user_test:
target_user[u['user']['id']] = str(u['user']['screen_name'])
plt.ion()
G = nx.Graph()
ego = defaultdict(dict)
for c in net_connections:
ego[c[0]][c[1]] = True
ego[c[1]][c[0]] = True
G.add_edge(net_users[str(c[0])]['user']['screen_name'], net_users[str(c[1])]['user']['screen_name'])
pos = nx.spring_layout(G)
max_iterations = 10
for i in range(max_iterations):
#plt.figure(1)
values = [float(colors.get(node, max_iterations)) / float(max_iterations+5) for node in G.nodes()]
plt.clf()
nodes = nx.draw_networkx(G, pos, cmap=plt.get_cmap('jet'), node_color=values, vmin=0, vmax=1)
plt.show()
input(">")
logging.info("Iteration %i" % i)
# check if all users have been located
if len(ground_truth) >= len(net_users):
network = nx.Graph(strict=True, directed=True)
for node, attributes in nodes:
network.add_node(node, shape=attributes['shape'])
for edge in edges:
network.add_edge(edge[0], edge[1])
if self.savegml:
nx.write_gml(network, self.directory +
'/network%05d.gml' % current_round)
if self.savefig:
try:
if self.pos is None or not self.pos_fixed:
# positions for all nodes
self.pos = nx.spring_layout(network, pos=self.pos)
plt.figure(1, figsize=self.figsize)
nodeShapes = set((aShape[1]["shape"]
for aShape in network.nodes(data=True)))
for aShape in nodeShapes:
nodelist = [sNode[0]
for sNode in [x for x in network.nodes(data=True) if x[1]["shape"] == aShape]]
nx.draw_networkx_nodes(network,
self.pos,
node_shape=aShape,
nodelist=nodelist,
node_color=[colors[node]
for node in nodelist],
alpha=self.alpha)
nx.draw_networkx_edges(network, self.pos)
plt.savefig(self.directory + '/network%05d.png' %
current_round, dpi=self.dpi)
def community_by_louvain(G,with_labels):
plt.figure(figsize=(25, 12), dpi=150)
partition = community.best_partition(G)
# drawing
size = float(len(set(partition.values())))
pos = nx.spring_layout(G)
count = 0.
for com in set(partition.values()):
count = count + 1.
list_nodes = [nodes for nodes in partition.keys()
if partition[nodes] == com]
nx.draw_networkx_nodes(G, pos, list_nodes, node_size=60,
node_color=str(count / size),label=True)
nx.draw_networkx_edges(G, pos, alpha=0.4)
if with_labels:
nx.draw_networkx_labels(G, pos)
plt.show()
def draw_nodes(graph, ax=None, layout=None, colors=None):
if ax is None:
ax = plt.axes(frameon=False)
if colors is None:
colors = [node_color(node) for node in graph.nodes()]
if not hasattr(graph, 'positions'):
if layout is None:
layout = LAYOUT
else:
assert layout in ('circular', 'spring')
if layout == 'spring':
graph.positions = nx.spring_layout(graph, iterations=ITERATIONS)
elif layout == 'circular':
graph.positions = nx.circular_layout(graph)
nx.draw_networkx_nodes(graph, graph.positions, ax=ax,
node_size=800, node_color=colors, lw=2)
nx.draw_networkx_labels(graph, graph.positions, ax=ax)