How to use the networkx.draw_networkx_edges function in networkx

To help you get started, we’ve selected a few networkx examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github sorgerlab / indra / indra / statements.py View on Github external
# Draw nodes
    options = {
        'marker': 'o',
        's': 200,
        'c': [0.85, 0.85, 1],
        'facecolor': '0.5',
        'lw': 0,
        }
    ax = plt.gca()
    nodelist = list(g)
    xy = numpy.asarray([pos[v] for v in nodelist])
    node_collection = ax.scatter(xy[:, 0], xy[:, 1], **options)
    node_collection.set_zorder(2)
    # Draw edges
    networkx.draw_networkx_edges(g, pos, arrows=False, edge_color='0.5')
    # Draw labels
    edge_labels = {(e[0], e[1]): e[2].get('label') for e in g.edges(data=True)}
    networkx.draw_networkx_edge_labels(g, pos, edge_labels=edge_labels)
    node_labels = {n[0]: n[1].get('label') for n in g.nodes(data=True)}
    for key, label in node_labels.items():
        if len(label) > 25:
            parts = label.split(' ')
            parts.insert(int(len(parts)/2), '\n')
            label = ' '.join(parts)
            node_labels[key] = label
    networkx.draw_networkx_labels(g, pos, labels=node_labels)
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    plt.show()
github nelpy / nelpy / nelpy / plotting / graph.py View on Github external
def draw_transmat_graph_outer(Go, Gi, edge_threshold=0, lw=1, ec='0.2', nc='k', node_size=15):

    num_states = Go.number_of_nodes()

    edgewidth = [ d['weight'] for (u,v,d) in Go.edges(data=True)]
    edgewidth = np.array(edgewidth)
    edgewidth[edgewidth
github merenlab / oligotyping / Oligotyping / visualization / decomposition_topology.py View on Github external
shapes = dict.fromkeys(G.nodes(), 0.0)
    for (u, v, d) in G.edges(data=True):
        shapes[u] = 'o' if d['size'] > 1 else ''

 
    # edge width, not in use at this moment
    edgewidth = []
    for (u, v, d) in G.edges(data = True):
        edgewidth.append(2) #len(G.get_edge_data(u,v)))

    parent_nodes_network = nx.draw_networkx_nodes(G, pos, nodelist = parent_nodes, node_shape = 'o', node_size = [sizes[i] for i in parent_nodes], node_color = '#EFEFEF')
    final_nodes_network = nx.draw_networkx_nodes(G, pos, nodelist = final_nodes, node_shape = 'o', node_size = [sizes[i] for i in final_nodes], node_color = '#FAFFFA')
    parent_nodes_network.set_edgecolor('#888888')
    final_nodes_network.set_edgecolor('#88BB00')
    nx.draw_networkx_edges(G, pos, alpha=0.4, node_size=10, width = 1, edge_color='#808080')
    nx.draw_networkx_labels(G, pos, font_size=8, font_weight = 'bold', labels = dict([(u, '%s\n(%s)' % (d['label'], pretty_print(d['size']))) for u, v, d in G.edges(data=True)]))
    
    # adjust the plot limits
    xmax = 1.02 * max(x for x, y in list(pos.values()))
    ymax = 1.02 * max(y for x, y in list(pos.values()))
    plt.xlim(0, xmax)
    plt.ylim(0, ymax)
    plt.xticks([])
    plt.yticks([])

    plt.subplots_adjust(hspace = 0, wspace = 0, right = 0.995, left = 0.005, top = 0.995, bottom = 0.005)

    plt.text(0.03, 0.97, title or "Topology", fontsize='xx-large',
             fontname="Arial", fontweight="bold", transform=plt.gca().transAxes)

    ax=plt.gca()
github nd7141 / influence-maximization / IC / visualisation.py View on Github external
if v not in activated:
            for u in activated:
                if u in G[v]:
                    E.add_edge(u,v,weight=1)
            activated.append(v)


    pos = nx.spring_layout(E)

    nx.draw_networkx_nodes(E, pos, node_color='k', node_size=10)
    nx.draw_networkx_nodes(E, pos, T, node_color='b', node_size=300)
    nx.draw_networkx_nodes(E, pos, S, node_color='w', node_size=300)

    nx.draw_networkx_labels(E, pos, labels=dict(zip(T,T)), font_color='r', font_size=10, font_weight='extra bold')

    nx.draw_networkx_edges(G, pos,edgelist=E.edges(), width=.5, edge_color='g', alpha=.5)
github Kappa-Dev / ReGraph / regraph / backends / networkx / plotting.py View on Github external
k = 0.9
    iterations = 50
    if parent_pos is not None and len(parent_pos) > 0:
        pos = dict()
        for k, v in parent_pos.items():
            if k in graph.nodes():
                pos[k] = v
        fixed = list(pos.keys())
        k = 0.1
        iterations = 10

    pos = nx.spring_layout(
        graph, k=k, pos=pos, fixed=fixed, iterations=iterations)
    nx.draw_networkx_nodes(
        graph, pos, node_color=new_colors, node_size=200)
    nx.draw_networkx_edges(
        graph, pos, alpha=0.4, width=2.0, node_size=200, scale=1.0)

    # Draw pattern edges highlighted
    edgelist = [(instance[edge[0]], instance[edge[1]])
                for edge in pattern.edges()]
    nx.draw_networkx_edges(
        graph, pos,
        edgelist=edgelist,
        width=3, alpha=0.3, edge_color=[instance_color] * len(edgelist), node_size=200)

    min_y = min(
        [v[1] for v in pos.values()])
    max_y = max(
        [v[1] for v in pos.values()])

    labels = {}
github angelosalatino / cso-classifier / v2 / classifier / misc.py View on Github external
pos = nx.spring_layout(G)
    
    
        
    hard=[(u,v) for (u,v,d) in G.edges(data=True) if d['kind'] == "hard"]
    soft=[(u,v) for (u,v,d) in G.edges(data=True) if d['kind'] == "soft"]
    conn=[(u,v) for (u,v,d) in G.edges(data=True) if d['kind'] == "conn"]
    
    
    remain = [i for i in G.nodes() if i!="paper"]  
    nx.draw_networkx_nodes(G,pos, nodelist=["paper"], node_color='orange',node_shape = 's', node_size=500, alpha=1)
    nx.draw_networkx_nodes(G,pos, nodelist=remain, node_color='#167096',node_shape = 'o', node_size=100, alpha=1)
    
    
    
    nx.draw_networkx_edges(G,pos,edgelist=hard,width=1)
    nx.draw_networkx_edges(G,pos,edgelist=soft,width=1,alpha=0.5,style='dashed')
    nx.draw_networkx_edges(G,pos,edgelist=conn,width=1,edge_color='black')
    
    nx.draw_networkx_labels(G,pos,font_size=9,font_family='sans-serif')
    
    import matplotlib.pyplot as plt  
    plt.axis('off')
    plt.show()
github scikit-tda / kepler-mapper / kmapper / drawing.py View on Github external
# Determine a fine size for nodes
    bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
    width, height = bbox.width, bbox.height
    area = width * height * fig.dpi

    n_nodes = len(g.nodes)

    # size of node should be related to area and number of nodes -- heuristic
    node_size = np.pi * area / n_nodes
    node_r = np.sqrt(node_size / np.pi)
    node_edge = node_r / 3

    pos = nx.spring_layout(g)

    nodes = nx.draw_networkx_nodes(g, node_size=node_size, pos=pos)
    edges = nx.draw_networkx_edges(g, pos=pos)
    nodes.set_edgecolor("w")
    nodes.set_linewidth(node_edge)

    plt.axis("square")
    plt.axis("off")

    return nodes
github pcournut / deep-learning-for-combinatorial-optimization / MD / dataset.py View on Github external
# (Optional) Add tour
        if tour[0]==True: 
            # Get sequence of edges visited
            path=[]
            for i in range(len(tour[1])-1):
                path.append((tour[1][i],tour[1][i+1]))
            path.append((tour[1][len(tour[1])-1],tour[1][0]))

            # Extend tour to non visited cities
            non_visited_cities=[city for city in range(seq_length) if city not in tour[1]]
            for city in non_visited_cities:
                path.append((tour[1][0],city))
                path.append((city,tour[1][0]))

            nx.draw_networkx_edges(g,pos=pos,edgelist=path, width=2, edge_color='b')

        plt.show()
github leihuang / infotopo0 / models / rxnnet / model.py View on Github external
for rxn in self.rxns], D=1)

        G = nx.DiGraph()
        G.add_nodes_from(spids, bipartite='sp')
        G.add_nodes_from(rxnids, bipartite='rxn')
        G.add_edges_from(edges)
        
        node2color = OD(zip(spids, ['b']*len(spids))+zip(rxnids, ['g']*len(rxnids)))
        ncolors = butil.get_values(node2color, G.nodes())
        ecolors = ['r']*len(edges)
        nlabels = OD(zip(G.nodes(), G.nodes()))

        fig = plt.figure(figsize=figsize)
        ax = fig.add_subplot(111)
        nx.draw_networkx(G, pos, ax=ax, node_color=ncolors, labels=nlabels)
        nx.draw_networkx_edges(G, pos, ax=ax, edge_color=ecolors, width=3, arrows=arrows)
        plt.savefig(filepath)
        if show:
            plt.show()
        plt.close()
github springer-math / Mathematics-of-Epidemics-on-Networks / EoN / visualization.py View on Github external
def _initialize(self):
        initial_status = EoN.get_statuses(self.G, self.node_history, self.frame_times[0])
        colorlist = [self.colordict[initial_status[node]] for node in self.nodelist]

        nodeset = {node for node in self.nodelist}
        edgelist = [edge for edge in self.G.edges() if edge[0] in nodeset and edge[1] in nodeset]
        nx.draw_networkx_edges(self.G, pos=self.pos, edgelist=edgelist, ax = self.network_axes)

        drawn_nodes = nx.draw_networkx_nodes(self.G, pos=self.pos, ax = self.network_axes, nodelist = self.nodelist, color=colorlist, **self.kwargs)
        Inodelist = [node for node in self.nodelist if initial_status[node] == 'I']
        drawn_I = [nx.draw_networkx_nodes(self.G, pos=self.pos, nodelist=Inodelist, color = self.colordict['I'], ax = self.network_axes, **self.kwargs)]

        self.network_axes.set_xticks([])
        self.network_axes.set_yticks([])
        
        time_markers = [None for ax in self.timeseries_axi]
        self._highlight_time(self.frame_times[0], time_markers)
        return drawn_nodes, drawn_I, time_markers