Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
loci = loci.split(",")
for ax, locus in zip(axes, loci):
plot_allelefreq(ax, df, locus)
# Delete unused axes
for ax in axes[len(loci):]:
ax.set_axis_off()
root = fig.add_axes([0, 0, 1, 1])
pad = .03
if not opts.nopanels:
panel_labels(root, ((pad / 2, 1 - pad, "A"), (.5 + pad, 1 - pad, "B"),
(pad / 2, 2 / 3. - pad / 2, "C"), (.5 + pad, 2 / 3. - pad / 2, "D"),
(pad / 2, 1 / 3. , "E"), (.5 + pad, 1 / 3. , "F"),
))
normalize_axes(root)
image_name = "allelefreq." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
style="white", cmap="coolwarm")
if len(args) != 1:
sys.exit(not p.print_help())
jsonfile, = args
fig = plt.figure(figsize=(iopts.w, iopts.h))
gs = gridspec.GridSpec(2, 2)
ax1 = fig.add_subplot(gs[:, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[1, 1])
plt.tight_layout(pad=3)
pf = plot_panel(jsonfile, ax1, ax2, ax3, opts.cmap)
root = fig.add_axes([0, 0, 1, 1])
normalize_axes(root)
image_name = "likelihood2.{}.".format(pf) + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
p.duplicate(a, b)
p.draw()
p = OpticalMapAlign(fig, [pad + 2 * w, 2 * w, w, w])
p.invert(a, b)
p.draw()
p = OpticalMapAlign(fig, [pad + 2 * w, w, w, w])
p.delete(a, b)
p.draw()
p = OpticalMapAlign(fig, [pad + 2 * w, 0, w, w])
p.duplicate(a, b)
p.draw()
normalize_axes(root)
image_name = mode + "." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
colors = "rbg" if nval == 3 else ["lightgray"] + list("rbg")
ystart = ymax
for d in data:
xstart = xmin
for dd, c in zip(d, colors):
xend = xstart + (xmax - xmin) * dd
root.plot((xstart, xend), (ystart, ystart), "-", color=c)
xstart = xend
ystart -= yinterval
root.text(.05, .5, "{0} LMD50 SNPs".format(len(data)),
ha="center", va="center", rotation=90, color="lightslategray")
for x, t, c in zip((.3, .5, .7), ("REF", "ALT", "HET"), "rbg"):
root.text(x, .95, t, color=c, ha="center", va="center")
normalize_axes(root)
image_name = pf + "." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
if calib:
o.calibrate(pixel_cm_ratio, tr)
print(o, file=fw)
i = o.seedno
if i > 7:
continue
ax4.text(.01, yy, str(i), va="center", bbox=dict(fc='none', ec='k'))
ax4.text(.1, yy, o.pixeltag, va="center")
yy -= .04
ax4.add_patch(Rectangle((.1, yy - .025), .12, .05, lw=0,
fc=rgb_to_hex(o.rgb)))
ax4.text(.27, yy, o.hashtag, va="center")
yy -= .06
ax4.text(.1 , yy, "(A total of {0} objects displayed)".format(nb_labels),
color="darkslategray")
normalize_axes(ax4)
for ax in (ax1, ax2, ax3):
xticklabels = [int(x) for x in ax.get_xticks()]
yticklabels = [int(x) for x in ax.get_yticks()]
ax.set_xticklabels(xticklabels, family='Helvetica', size=8)
ax.set_yticklabels(yticklabels, family='Helvetica', size=8)
image_name = op.join(outdir, pf + "." + iopts.format)
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
return objects
dataA = import_data(dataA)
dataB = import_data(dataB)
dataC = import_data(dataC)
dataD = import_data(dataD)
subplot(A, dataA, "Inversion error rate", "Accuracy", xlim=.5)
subplot(B, dataB, "Translocation error rate", "Accuracy", xlim=.5,
legend=("intra-chromosomal", "inter-chromosomal",
"75\% intra + 25\% inter"))
subplot(C, dataC, "Number of input maps", "Accuracy", xcast=int)
subplot(D, dataD, "Number of input maps", "Accuracy", xcast=int)
labels = ((.03, .97, "A"), (.53, .97, "B"),
(.03, .47, "C"), (.53, .47, "D"))
panel_labels(root, labels)
normalize_axes(root)
image_name = "simulation." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
duos, = ax.plot(duos, "o", mfc='w', mec='g')
trios, = ax.plot(trios, "o", mfc='w', mec='b')
ax.set_title("Mendelian errors based on trios and duos in HLI samples")
nduos = "Mendelian errors in 362 duos"
ntrios = "Mendelian errors in 339 trios"
ax.legend([trios, duos], [ntrios, nduos], loc='best')
ax.set_xticks(ticks)
ax.set_xticklabels(treds, rotation=45, ha="right", size=8)
yticklabels = [int(x) for x in ax.get_yticks()]
ax.set_yticklabels(yticklabels, family='Helvetica')
ax.set_ylabel("Mendelian errors (\%)")
ax.set_ylim(ymin, 20)
normalize_axes(root)
image_name = "mendelian_errors." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
ypos = y - pad
xx = markers[0], ends[0]
root.plot(xx, (ypos, ypos), "-", lw=2, color=lsg)
root.text(sum(xx) / 2, ypos - pad, "34,115bp", **fontprop)
xx = markers[1], begs[1]
root.plot(xx, (ypos, ypos), "-", lw=2, color=lsg)
root.text(sum(xx) / 2, ypos - pad, "81,276bp", **fontprop)
root.plot((ends[0], begs[1]), (y, y), ":", lw=2, color=lsg)
root.text(sum(markers) / 2, ypos - 3 * pad, r"$\textit{Estimated gap size: 96,433bp}$",
color="r", ha="center", va="center")
labels = ((.05, .95, 'A'), (.05, .6, 'B'), (.05, .27, 'C'))
panel_labels(root, labels)
normalize_axes(root)
pf = "estimategaps"
image_name = pf + "." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
# ax4: Pair
tredparse_results = parse_results("tredparse_results_het-pair.txt", exclude=20)
title = SIMULATED_DIPLOID + " (Sub-model 4: Paired-end reads)"
plot_compare(ax4, title, tredparse_results, None, color=color,
max_insert=max_insert, risk=False)
for ax in (ax1, ax2, ax3, ax4):
ax.set_xlim(0, max_insert)
ax.set_ylim(0, max_insert)
root = fig.add_axes([0, 0, 1, 1])
pad = .03
panel_labels(root, ((pad / 2, 1 - pad, "A"), (1 / 2., 1 - pad, "B"),
(pad / 2, 1 / 2. , "C"), (1 / 2., 1 / 2. , "D")))
normalize_axes(root)
image_name = "power." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
solid_capstyle="round", solid_joinstyle="round")
ax.plot(xdata, ydata, "k.", mec="k", mfc="w", mew=3, ms=12)
ax.vlines(p, [0], [110], colors="beige", lw=3)
normalize_lms_axis(ax, xlim=110, ylim=110)
HorizontalChromosome(root, .6, .6 + w, .09, patch=patch,
height=.02, lw=2)
scaffolds = ("a", "-c", "b")
for i, s in enumerate(scaffolds):
xx = (patch[i] + patch[i + 1]) / 2
root.text(xx, .09, s, va="center", ha="center")
root.text(.6 + w / 2, .04, "LMS($a||-c||b$) = 10", ha="center")
labels = ((.05, .95, 'A'), (.05, .48, 'B'), (.55, .48, 'C'))
panel_labels(root, labels)
normalize_axes(root)
pf = "lms"
image_name = pf + "." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)